首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a Eulerian-Eulerian two-fluid model combined with the kinetic theory of granular flow is adopted to simulate power-law fluid–solid two-phase flow in the fluidized bed. Two new power-law liquid–solid drag models are proposed based on the rheological equation of power-law fluid and pressure drop. One called model A is a modified drag model considering tortuosity of flow channel and ratio of the throat to pore, and the other called model B is a blending drag model combining drag coefficients of high and low particle concentrations. Predictions are compared with experimental data measured by Lali et al., where the computed porosities from model B are closer to the measured data than other models. Furthermore, the predicted pressure drop rises as liquid velocity increases, while it decreases with the increase of particle size. Simulation results indicate that the increases of consistency coefficient and flow behavior index lead to the decrease of drag coefficient, and particle concentration, granular temperature, granular pressure, and granular viscosity go down accordingly.  相似文献   

2.
Steady incident flow past a circular cylinder for sub- to supercritical Reynolds number has been simulated as an unsteady Reynolds-averaged Navier–Stokes (RANS) equation problem using nonlinear eddy-viscosity modelling assuming two-dimensional flow. The model of Craft et al. (Int. J. Heat Fluid Flow 17 (1996) 108), with adjustment of the coefficients of the ‘cubic’ terms, predicts the drag crisis at a Reynolds number of about 2×105 due to the onset of turbulence upstream of separation and associated changes in Strouhal number and separation positions. Slightly above this value, at critical Reynolds numbers, drag is overestimated because attached separation bubbles are not simulated. These do not occur at supercritical Reynolds numbers and drag coefficient, Strouhal number and separation positions are in approximate agreement with experimental measurements (which show considerable scatter). Fluctuating lift predictions are similar to sectional values measured experimentally for subcritical Reynolds numbers but corresponding measurements have not been made at supercritical Reynolds numbers. For oscillatory ambient flow, in-line forces, as defined by drag and inertia coefficients, have been compared with the experimental values of Sarpkaya (J. Fluid Mech. 165 (1986) 61) for values of the frequency parameter, β=D2T, equal to 1035 and 11240 and Keulegan–Carpenter numbers, KC=U0T/D, between 0.2 and 15 (D is cylinder diameter, ν is kinematic viscosity, T is oscillation period, and U0 is the amplitude of oscillating velocity). Variations with KC are qualitatively reproduced and magnitudes show best agreement when there is separation with a large-scale wake, for which the turbulence model is intended. Lift coefficients, frequency and transverse vortex shedding patterns for β=1035 are consistent with available experimental information for β≈250−500. For β=11240, it is predicted that separation is delayed due to more prominent turbulence effects, reducing drag and lift coefficients and causing the wake to be more in line with the flow direction than transverse to it. While these oscillatory flows are highly complex, attached separation bubbles are unlikely and the flows probably two dimensional.  相似文献   

3.
The low-dimensional model derived for the wall region of a turbulent boundary layer (Aubry et al., 1988) is applied to a drag-reduced flow. In agreement with some experimental results, drag reduction is modeled by thickening the wall region, which is achieved by applying stretching transformations to the original flow. By application of a Galerkin projection, a set of ordinary differential equations (ODEs) is obtained whose structure is identical to the set corresponding to the unmodified flow. The coefficients of the ODEs are modified in a nontrivial way. The bifurcation diagrams plotted for different values of the stretching parameter are different in detail but the structure is globally the same. In particular, the intermittent behavior which Aubry et al. identified with the cyclic bursting events experimentally observed is still present. The scenario by which intermittency appears through a subcritical Hopf bifurcation in which a heteroclinic cycle is created and disappears through a bifurcation to traveling waves is identical. These results hold for values of the stretching between 1 and 2.65, the value at which the top of the buffer layer reaches the centerline of the pipe. This is in agreement with experimental results for flows whose drag is reduced but which still display intermittency. The bifurcations occur in the stretched flow at increased levels of dissipation (relative to the unstretched flow), consistent with theoretical pictures of drag reduction, in which the increase of scale is due to stabilization by an increase of dissipation in the turbulent part of the flow. Moreover, this method is a systematic way to perturb the coefficients of the ODEs of Aubry et al. (1988). Under this kind of perturbation, the behavior of the solution (in the part of the bifurcation diagram physically relevant) is found to be extremely robust.  相似文献   

4.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.  相似文献   

5.
IntroductionThewakeinterferencewithcomplexconfigurationsconsistingofmultiplebluffbodiesisattractingattentionofalotofresearchers,becauseofitspracticalapplicationstoindustry.Forexample,twinstrutstosupportwingsinthefieldsofaeronauticalengineering;twinchim…  相似文献   

6.
A non-equilibrium post dryout heat transfer model for calculating the wall temperature distribution in vertical upflows is presented in this study. The model is based upon the three path heat transfer formulation developed by MIT researchers (Laverty & Rohsenow 1964, Forslund & Rohsenow 1968, Hynek et al. 1969 and Plummer et al. 1974) that involves heat transfer from wall to vapor, from wall to droplets in contact with the wall and from vapor to liquid droplets in the vapor core. Downstream gradients for the bulk vapor temperature, vapor quality, droplet size and vapor velocities are identical to those used by Hynek et al. (1969) and Plummer et al. (1974). Conditions at the dryout location are calculated using a modified version of a technique developed by Hynek et al. (1969).A procedure for determining an average droplet diameter based on a size distribution is introduced. Migration of droplets through the boundary layer and droplet deposition flux are predicted with the model of Gani? & Rohsenow (1979). Heat transfer from the wall to the impinging liquid droplets is calculated with a correlation by Holman & McGinnis (1969). Mechanisms contributing to wall to droplet heat transfer are identified as (a) droplet-wall contact, (b) intensive droplet evaporation inside the boundary layer, and (c) destruction of the boundary layer due to droplet migration to, and rebound from, the hot surface. The significance of the average droplet size and size distribution is demonstrated through its control over the free stream evaporation and droplet deposition rates.Predicted uniform heat flux wall temperature profiles for water, nitrogen and freon 12 are in good agreement with the data of Era et al. (1966), Bennett et al. (1967), Forslund & Rohsenow (1968), Ling et al. (1971), Groeneveld (1972) and Janssen & Kervinen (1975).  相似文献   

7.
Steady, axisymmetric, isothermal, incompressible flow past a sphere with uniform blowing out of the surface is investigated for Reynolds numbers in the range 1 to 100 and surface velocities up to 10 times the free stream value. A stream-function-velocity formulation of the flow equations in spherical polar co-ordinates is used and the equations are solved by a Galerkin finite-element method. Reductions in the drag coefficients arising from blowing are computed and the effects on the viscous and pressure contributions to the drag considered. Changes in the surface pressure, surface vorticity and flow patterns for two values of the Reynolds number (1 and 40) are examined in greater detail. Particular attention is paid to the perturbation to the flow field far from the sphere.  相似文献   

8.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

9.
An analytical approach to the problem of droplet deposition in annular flow through an annulus is presented. The underlying theory, due to Hutchinson et al. (1971), allows the droplet deposition to be treated as a diffusion process and the results obtained enable some properties of mass transfer coefficients in non-circular geometries to be explained.  相似文献   

10.
For studying unsteady flow past a rotating circular cylinder the Navier-Stokes equations are used. The numerical algorithm is based on an artificial-compressibility method, an implicit three-layer second-order scheme with subiterations with respect to time, a third-order scheme with splitting of the flux vectors for the convective terms, and a central-difference scheme for integrating the viscous terms. The calculated velocity profiles, the vorticity fields, the Strouhal numbers, the distribution of the pressure and friction coefficients over the cylinder surface, and the coefficients of the drag and lift forces for the laminar flow regime are analyzed.  相似文献   

11.
Abstract

The purpose of this research is to numerically study a drag reduction method—passive control of shock/boundary layer interaction, which is applied to the boattail portion of a secant-ogive-cylinder-boattail projectile in turbulent transonic flows. The flow pattern and the components of aerodynamic drag computed from numerical data are analyzed. The effectiveness of this method is studied by varying the values of parameters such as porosity distribution, maximum porosity factor and size of porous region. The conditions for optimal drag reduction are investigated and reported. The present results show that the use of this passive control method can not only reduce the boattail drag but also the base drag, and results in an additional 8% total drag reduction compared to that without the passive control technique. This passive control method can be an effective approach for the design of high-performance projectiles in the transonic regime.  相似文献   

12.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

13.
In this paper, we propose an extension of a PISO method, previously developed to solve the Euler equations, and which is here extended to the ideal magnetohydrodynamic (MHD) equations. By following a pressure‐based approach, we make use of the flexibility given by pressure equation for calculating flows at arbitrary Mach numbers. To handle MHD discontinuities, we have adapted the MHD‐Advection Upstream Splitting Method for our pressure‐based formulation. With the purpose of validation, four sets of test cases are presented and discussed. We start with the circularly polarized Alfvén waves that serves as a smooth flow validation. The second case is the 1‐D Riemann problem that is calculated using both 1‐D and 2‐D formulation of the MHD equations. The third and fourth problems are the Orszag–Tang vortex and the supersonic low‐ β cylinder allowing validation of the method in complex 2‐D MHD shock interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force F on solid volume fraction ? and the Reynolds number based on the mean slip velocity Rem. In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force F is obtained as a function of solid volume fraction ? (0.1 ? ? ? 0.5) and mean flow Reynolds number Rem (0.01 ? Rem ? 300) for random assemblies of monodisperse spheres. These results extend previously reported results of  and  to a wider range of ?, Rem, and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Rem in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Rem but the pressure contribution is linear in Rem (for Rem > 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Rem in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of ? and Rem is proposed that corrects the existing correlations in Rem range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.  相似文献   

15.
The problem of flow and heat transfer associated with a spherical droplet accelerated from rest under gravitational force is studied using a Legendre‐spectral element method in conjunction with a mixed time integration procedure to advance the solution in time. An influence matrix technique that exploits the superposition principle is adapted to resolve the lack of vorticity boundary conditions and to decouple the equations from the interfacial couplings. The computed flow and temperature fields, the drag coefficient, the Nusselt number, and the interfacial velocity and vorticity are presented for a drop moving vertically in a quiescent gas of infinite extent to illustrate the evolution of the flow and temperature fields. Comparison of the predicted drag coefficient and the Nusselt number against previous numerical and experimental results indicate good agreement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The Continuous Thermodynamics Model (CTM) (Cotterman et al., 1985) is a suitable method to reduce computational cost of multi-component vaporization models. The droplet composition is described by a probability density function (PDF) rather than tens of components in the classical Discrete Component Model (DCM). In the first CTM method developed for this application, the PDF was assumed to be a Γ-function (Hallett, 2000), but some problems had appeared in the case of vapor condensation at the droplet surface (Harstadt et al., 2003). The method put forward in this article, the Quadrature Method of Moments (QMoM), enables one to avoid any assumption on the PDF mathematical form. Following Lage who has developed this method for phase equilibria (Lage, 2007), this article widens the scope of QMoM to the modelling of multi-component droplet vaporization. The different CTM approaches are presented in the first part and the results obtained for a vapor condensation test case are then compared and analysed to illustrate improvements made by QMoM. To cite this article: C. Laurent et al., C. R. Mecanique 337 (2009).  相似文献   

17.
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.  相似文献   

18.
The drag reduction characteristics of certain high molecular weight polymers have been studied by various investigators. Because of the polymer’s ability to reduce turbulent shear stress and dependence of the boundary layer wall pressure spectral amplitude on the shear stress, polymer has the potential to suppress noise and vibration caused by the boundary layer unsteady pressures. Compared to its effect on drag reduction, polymer additive effects on turbulent boundary layer (TBL) wall pressure fluctuations have received little attention. Kadykov and Lyamshev [Sov. Phys. Acoust. 16 (1970) 59], Greshilor et al. [Sov. Phys. Acoust. 21 (1975) 247] showed that drag reducing polymer additives do indeed reduce wall pressure fluctuations, but they have not established any scaling relationship which effectively collapse data. Some effort has been made by Timothy et al. [JASA 108 (1) (2000) 71] at Penn State University to develop a scaling relationship for TBL wall pressure fluctuations that are modified by adding drag reducing polymer to pure water flow. This paper presents a theoretical model based on the work of the Timothy et al. team at ARL, Penn State University. Through this model one can estimate, reduction in TBL flow induced noise and vibration for rigid smooth surfaces due to release of drag reducing polymers in boundary layer region. Using this theoretical model, flow noise as experienced by a typical flush mounted hydrophone has been estimated for a smooth wall plate as a function of polymer additive concentration. Effect of non-dimensionalisation of the wall pressure fluctuations frequency spectra with traditional outer, inner and mixed flow variables will also be addressed in the paper. The paper also covers a model based on molecular relaxation time in polymer additives which not only reduce drag but also flow induced noise up to certain polymer concentration.  相似文献   

19.
宋家喜  潘书诚 《力学学报》2022,54(9):2419-2434
本文采用守恒清晰界面多相流数值方法模拟了超声速和高超声速环境下三维液滴的推进、变形和破碎演化过程.数值模拟结果与实验数据的一致性表明了本文所用数值方法和计算程序的准确性, 而网格无关性研究验证了采用的网格分辨率可以捕捉流场和界面的主要特征. 模拟结果验证了高韦伯数下液滴变形破碎过程所遵循的剪切诱导剥离(SIE)破碎机制, 其包含液滴的扁平化和剪切剥离两个主要特征. 而最近发现的SIE破碎机制下的循环破碎机制也在本文得到了验证, 即主液滴从球形液滴破碎为小液滴会经历多个循环重复的破碎阶段, 高韦伯数下液滴的破碎并非一次性剪切剥离的结果, 而是会发生逐层的剪切剥离和破碎. 本文还研究了马赫数对激波冲击液滴加速变形过程的影响. 结果表明, 高韦伯数下不同马赫数的液滴破碎过程具有高度一致性, 并遵循统一的SIE破碎机制.通过对液滴质心位移、速度、加速度和拽力系数的量化统计揭示其运动过程中的统一加速规律. 在激波的驱动下, 液滴并非以一个恒定的加速度做加速运动.在扁平化不明显的前期, 液滴以一个恒定的加速度做加速运动.随着液滴扁平化的发生, 迎风面积的增加导致拽力系数的增大, 进而导致液滴加速度的不断增大.   相似文献   

20.
This paper uses the element‐free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows. The control equations are discretized with the standard Galerkin method in space and a fractional step finite element scheme in time. Regular background cells are used for the quadrature. Several classical fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven cavity. The flow field computed with the EFG method compared well with those calculated using the finite element method (FEM) and finite difference method. The simulations show that although EFG is more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder. These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal number agrees well with previous results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号