首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro selection is a method that allows the simultaneous screening of very large numbers of nucleic acid molecules for a wide range of properties from binding characteristics to catalytic properties; moreover, the isolation of the very rare functional molecules becomes possible. Binding sites between proteins and nucleic acids, for example, have been evaluated by this methodology in order to gain information about protein/nucleic acid interactions. Structure and function of catalytic RNA (“ribozymes”) has been studied by in vitro selection and has led to new ribozymes with improved catalytic function. Substrate specificity of catalytic RNA has been changed and has led to a ribozyme that cleaves DNA. Other applications include the isolation of nucleic acids that bind specifically to small organic molecules and of RNA molecules that form triple helices with double-stranded DNA. In this article we discuss the background, design, and results of in vitro genetic experiments, which bridge biochemical/molecular biological and organic chemical approaches to molecular recognition.  相似文献   

2.
This article reviews the properties of a novel class of molecules: the tetrameric acids. These molecules have brought a large interest in petroleum science since the discovery of the family of molecules named ARN in 2004. ARN, which is naturally present in oil, is responsible, by reaction with calcium ion, of the formation of calcium naphthenate deposits; organic deposits that cause irregularities in crude oil production and processing. In order to study the properties of ARN, a model tetrameric acid molecule mimicking some of its properties named BP-10 has been developed in 2008 by Nordgård and Sjöblom and has been extensively used since then.  相似文献   

3.
设计合成了3种可溶液加工的基于噻吩给体和2-吡喃-4-亚基丙二氰(PM)受体的新型Donor-Acceptor-Donor(D-A-D)型有机小分子TPT-N, TPT-S和TPT-D. 研究了噻吩给体单元上烷基链的数目对分子的溶解性、 光物理(吸收特性)、 热稳定和光电性能的影响. 结果表明, 随着烷基链的增加, 分子的溶解性增加, 成膜性能提高; 分子在溶液中的吸收光谱发生红移, 薄膜的吸收谱带变窄, 分子的最高占有分子轨道(HOMO)能级提高. 以D-A-D型有机小分子为给体, 富勒烯C60衍生物-苯基-C61-丁酸甲酯(PCBM)为受体制备了结构为ITO/PEDOT∶PSS/D-A-D∶PCBM/LiF/Al的体异质结太阳能电池. 研究结果表明, 基于单烷基链的TPT-S的太阳能电池具有相对较高的能量转换效率. 说明在D-A-D型有机小分子太阳能电池材料中, 烷基链的数目是决定材料性能及器件性能的重要因素之一.  相似文献   

4.
A new double chained surfactant, 2-octyl-dodecanoyl-6-O-ascorbic acid (8ASC10), with a L-ascorbic acid unit as the polar headgroup was synthesized for the first time. The behavior of the compound in the dry solid state has been characterized through DSC, XRD, and SAXS measurements. The surfactant forms stable viscous organogels in the presence of suitable organic solvents and also water-induced organogels upon addition of water to the organogel. These mixtures show shear-thinning properties and are birefringent. The behavior and properties of the organogels have been studied through rheology, DSC, and SAXS experiments. The organogels possess the same antioxidant properties of the original L-ascorbic acid ring and can be used to solubilize and protect valuable organic molecules.  相似文献   

5.
In studies of the adsorption of surface-active molecules from organic phase on mineral surfaces in relation to wettability alterations, the system has normally been made water-free. However, since water is an inherent part of all oil-bearing formations, it is of interest to study adsorption in solid/water/oil systems. In this paper we therefore study the adsorption of benzoic (BzCOOH) and 4-heptylbenzoic (4-HBA) acid from organic solution on different silica substrates in the presence of water. The results show that the adsorption is enhanced in the presence of water and that 4-HBA has a higher affinity for the silica surface than does BzCOOH. Variations in the surface properties of the silica substrates had no significant effect on the adsorption. In studies of the adsorption of organic acids from aqueous phase, the acid has been added either as the corresponding acid salt or as the acid itself. However, the adsorption behavior of the acid salt is not necessarily representative of the adsorption behavior of the acid. To investigate this more closely, we studied the adsorption of benzoic acid added to water both as sodium benzoate (BzCOO(-)Na(+)) and as BzCOOH. The results revealed a significant increase in the maximum adsorption when BzCOO(-)Na(+) was used as adsorbate instead of BzCOOH. Copyright 2000 Academic Press.  相似文献   

6.
The presence of adsorbates can modify the morphology of the underlying substrate. The modifications are the results of a subtle thermodynamic balance between intermolecular and molecular-substrate interactions together with the surface relaxation energy. The information on how the substrate structures are influenced by the adsorbates, and therefore, the physical and chemical properties of the resulting interface is fundamentally important. In this review, we examine facetting of transition metals induced by either atomic species or organic molecules. First we focus on facetting induced by atomic species and small molecules under high pressure or UHV conditions. Following that, organic molecules containing several electronegative elements, such as amino acids, benzoic acid and aminobenzoic acid, are examined. These organic molecules can induce large scale facets with great similarity on fcc crystal surfaces. Learning from the correlation between the facetting induced by these molecules and those of atomic species, we try to rationalise the molecular mechanism for the formation of adsorbate induced facets.  相似文献   

7.
The grafting of organosilyl groups in the interlamellar space of certain crystalline silicic acids, such as H-magadiite, occurs when the interlayer spaces have been expanded previously by intercalation of some polar organic substances. The interlamellar Si-OH groups are then accessible to silylating reagents and Si-O-Si bridges form between the silicic acid surface and the organic groups.The grafting reaction is controlled by a diffusion mechanism: desorption of the polar organic guest molecules has to occur simultaneously with the diffusion of the reacting molecules into the interlayer space.The resulting materials are organosilicic compounds which retain the lamellar structure of the starting crystalline silicic acids. Their surface properties are determined by the grafted groups.Part I: This Journal 256:135 (1978); Part II: This Journal 257:178 (1979).  相似文献   

8.
改变分子化学结构和调控分子结构聚集态行为从而影响或改变材料的化学和物理性质, 是开发新型高效有机光电功能材料的重要手段. 在共轭有机分子外缘引入烷基链一般是为了改进材料溶解性能, 但近来的一些研究表明, 烷基链长对一些共轭有机小分子固态聚集行为和光电性质具有重要影响, 烷基链扮演着显著调控材料光电性质的“功能基团”作用. 本文以聚集诱导发光(aggregation-induced emission, AIE)/聚集强化荧光(aggregation enhanced emission, AEE)发射共轭有机小分子为重点, 对近年来有关烷基链长对共轭有机分子聚集形态和光电性质影响的一些典型事例进行评述, 旨在使人们在进行共轭有机分子设计合成及其结构与性能关系研究中能够关注烷基链的因素, 使烷基链变化作为功能导向晶态共轭有机材料设计合成及其可控制备的一种手段.  相似文献   

9.
The last few years have witnessed a spectacular advancement in new catalytic methods based on metal-free organic molecules. In many cases, these small compounds give rise to extremely high enantioselectivities. Preparative advantages are notable: usually the reactions can be performed under an aerobic atmosphere with wet solvents. The catalysts are inexpensive and they are often more stable than enzymes or other bioorganic catalysts. Also, these small organic molecules can be anchored to a solid support and reused more conveniently than organometallic/bioorganic analogues, and show promising adaptability to high-throughput screening and process chemistry. Herein we focus on four different domains in which organocatalysis has made major advances: 1) The activation of the reaction based on the nucleophilic/electrophilic properties of the catalysts. This type of catalysis has much in common with conventional Lewis acid/base activation by metal complexes. 2) Transformations in which the organic catalyst forms a reactive intermediate: the chiral catalyst is consumed in the reaction and requires regeneration in a parallel catalytic cycle. 3) Phase-transfer reactions: The chiral catalyst forms a host-guest complex with the substrate and shuttles between the standard organic solvent and the second phase (i.e. a solid, aqueous, or fluorous phase in which the organic transformation takes place). 4) Molecular-cavity-accelerated asymmetric transformations: the catalyst can select between competing substrates, depending on size and structure criteria. The rate acceleration of a given reaction is similar to the Lewis acid/base activation and is the consequence of the simultaneous action of different polar functions. Herein it is shown that organocatalysis complements rather than competes with current methods. It offers something conceptually novel and opens new horizons in synthesis.  相似文献   

10.
In this study, direct surface grafting of nanoporous alumina membranes and glass‐supported alumina films was carried out with three different fluorinated organic acids: trifluoroacetic acid, perfluoropentanoic acid and 2,3,4,5,6‐pentafluorobenzoic acid. Elemental surface composition and chemical environment of alumina were investigated using X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Alumina surfaces grafted with fluoro‐organic acids exhibited increased hydrophobic properties compared to ungrafted surfaces when measured using goniometry and atomic force microscopy (AFM). This work describes the evidence for surface chemical modification of alumina using direct reaction with organic acids. An AFM study of the adsorption of the immunoglobulin G (IgG) molecules on the fluoro‐organic‐acid‐grafted surfaces is reported. The results show that an ordered arrangement of immunoglobulin G structures with in‐filling of pores could be achieved only on the more hydrophobic fluoro‐organic‐acid‐grafted alumina membranes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
杂多化合物为一类重要的多核配合物,因其优良的催化性能及其在其他领域的应用前景而受到广泛的重视[1-3]。研究发现,Keggin型阴离子具有很强的接受电子能力[4],可作为电子受体与有机给体相结合形成电荷转移盐,该类盐在光激发下可以发生电荷转移,从而表...  相似文献   

12.
Controlling the molecular growth of organic semiconductors is an important issue to optimize the performance of organic devices. Conjugated molecules, used as building blocks, have an anisotropic shape and also anisotropic physical properties like charge transport or luminescence. The main challenge is to grow highly crystalline layers with molecules of defined orientation. The higher the crystallinity, the closer these properties reach their full intrinsic potential, while the orientation determines the physical properties of the film. Herein we show that the molecular orientation and growth can be steered by the surface chemistry, which tunes the molecule-substrate interaction. In addition, the oxygen reconstruction of the surface, demonstrates the flexibility of the organic molecules to adopt a given surface corrugation and their unique possibility to release stress by tilting.  相似文献   

13.
Starch is the second largest natural biopolymer. Its unique biodegradable and biocompatible properties make it be increasingly applied to the field of biomedicine. As one kind of polysaccharide, starch is easily degraded into small organic molecules by amylase in the alimentary canal. The fact that the activity of amylase is restrained in the high acid environment in stomach provides an opportunity to prepare an intestinal-specific delivery carrier with  相似文献   

14.
CO2 laser induced pyrolysis of silane was used to produce silicon nanoparticles with an average diameter as small as 5 nm at high rates (up to 200 mg/h). Etching these particles with a mixture of hydrofluoric acid (HF) and nitric acid (HNO3) reduces their size and passivates their surface such that they exhibit bright visible photoluminescence (PL). This paper describes the attachment of organic molecules to hydrogen-terminated and hydroxyl-terminated surfaces of these nanoparticles. Stable particle dispersions in various solvents were obtained by treatment of hydrogen-terminated surfaces with octadecene or undecylenic acid and by treatment of hydroxyl-terminated surfaces with octadecyltrimethoxysilane. Transmission electron microscopy showed that the surface-functionalized particles were well dispersed and crystalline. FTIR spectroscopy confirmed the expected reactions of the organic molecules with the particle surfaces. Photoluminescence measurements showed that surface treatment significantly stabilized the PL properties of the nanoparticles against degradation. Size selective precipitation was applied to particle dispersions and allowed some narrowing and tuning of the PL spectrum.  相似文献   

15.
The B←N unit has a large dipole and it is isoelectronic to C−C moiety with no dipole. Incorporating B←N units into π-conjugated system is a powerful strategy to design organic small molecules and polymers with intriguing opto-electronic properties and excellent opto-electronic device performance. However, it is unclear how the B←N unit affects electronic structures and opto-electronic properties of large π-conjugated molecules. In this work, to address this question, we developed three dibenzo-azaacene molecules in which two B←N units were introduced at different positions. Although the dibenzo-azaacene skeleton is fully π-conjugated, the effect of B←N unit on the electronic structures of the adjacent rings is much stronger than that of the distant rings. As a result, the three molecules with isomerized B←N incorporation patterns possess different electronic structures and exhibit tunable opto-electronic properties. Among the three molecules, the centrosymmetrical molecule exhibits higher LUMO/HOMO energy levels than those of the two axisymmetrical molecules. When used as the active layer in organic field-effect transistors (OFETs), while the two axisymmetrical molecules show unipolar electron transporting property, the centrosymmetrical molecule exhibits ambipolar hole and electron transporting behavior. This work not only deepens our understanding on organoboron π-conjugated molecules, but also indicates a new strategy to tune opto-electronic properties of organic semiconductors for excellent device performance.  相似文献   

16.
赵志刚  刘兴利  李晖  唐晓丽 《有机化学》2008,28(7):1233-1237
以刚性的脱氧胆酸甲酯为隔离基, 在其3位连接苯甲酰基, 12位连接手性不对称脲, 设计合成了一类新型的手性分子钳. 其结构均经1H NMR, IR, MS和元素分析确证, 并且考察了其对中性分子和D/L-氨基酸甲酯的识别性能. 实验结果表明, 这类分子钳人工受体不仅对中性有机小分子具有良好的识别能力, 而且对D/L-氨基酸甲酯亦具有优良的对映选择性识别性能.  相似文献   

17.
Linear ladder-type π-conjugated molecules have attracted much interest because of their intriguing physicochemical properties. To modulate their electronic structures, an effective strategy is to incorporate main-group elements into ladder-type π-conjugated molecules. In line with this strategy, a variety of ladder-type π-conjugated molecules with main-group elements have been synthesized to explore their potential utility as organic functional materials. In this context, phosphole-based π-conjugated molecules are highly attractive, owing to their unique optical and electrochemical properties, which arise from the phosphorus atom. Herein, the synthesis and physicochemical properties of doubly thiophene-fused benzodiphospholes, as a new class of phosphole-based ladder-type π-conjugated molecule, are reported. Systematic investigations into the physicochemical properties of doubly thiophene-fused benzodiphospholes revealed their pluripotent features: intense near-infrared fluorescence, excellent two-photon absorption property, and remarkably high electron-transporting ability. This study demonstrates the potential utility of doubly thiophene-fused benzodiphospholes as organic functional materials for biological imaging, nonlinear optics, organic transistors, and organic photovoltaics.  相似文献   

18.
微波促进一锅法合成氨基甲酸酯型α-猪去氧胆酸分子钳   总被引:1,自引:0,他引:1  
在微波辐射条件下, 以α-猪去氧胆酸为隔离基, 通过三光气桥连各种芳香胺, 以很好的产率合成了一系列新的手性分子钳, 其结构经1H NMR, IR, MS和元素分析确证, 并且考察了其对中性分子和D/L-氨基酸甲酯的识别性能. 实验结果表明, 这类分子钳人工受体不仅对中性有机小分子具有优良的识别性能, 而且对D/L-氨基酸甲酯亦具有良好的对映选择性识别能力.  相似文献   

19.
The development of nanotechnology using organic materials is one of the most intellectually and commercially exciting stories of our times. Advances in synthetic chemistry and in methods for the investigation and manipulation of individual molecules and small ensembles of molecules have produced major advances in the field of organic nanomaterials. The new insights into the optical and electronic properties of molecules obtained by means of single-molecule spectroscopy and scanning probe microscopy have spurred chemists to conceive and make novel molecular and supramolecular designs. Methods have also been sought to exploit the properties of these materials in optoelectronic devices, and prototypes and models for new nanoscale devices have been demonstrated. This Review aims to show how the interaction between synthetic chemistry and spectroscopy has driven the field of organic nanomaterials forward towards the ultimate goal of new technology.  相似文献   

20.
A new synthetic approach for the formation of ultrathin polymer films with customizable properties was developed. In this approach, the kinematic nature of proton collisions with simple organic molecules condensed on a substrate is exploited to break C-H bonds preferentially. The subsequent recombination of carbon radicals gives a cross-linked polymer thin film, and the selectivity of C-H cleavage preserves the chemical functionalities of the precursor molecules. The nature and validity of the method are exemplified with theoretical results from ab initio molecular dynamics calculations and experimental evidence from a variety of characterization techniques. Its applicability is demonstrated by the synthesis of ultrathin polymer films with precursor molecules such as dotriacontane, docosanoic acid, poly(acrylic acid) oligomer, and polyisoprene. The approach is fundamentally different from conventional chemical synthesis as it involves an unusual mix of physical and chemical processes including charge exchange, projectile penetration, kinematics, collision-induced dissociation, inelastic energy transfer, chain transfer, and chain cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号