首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A proper orthogonal decomposition (POD)‐based reduced‐order model of the parabolized Navier–Stokes (PNS) equations is derived in this article. A space‐marching finite difference method with time relaxation is used to obtain the solution of this problem, from which snapshots are obtained to generate the POD basis functions used to construct the reduced‐order model. In order to improve the accuracy and the stability of the reduced‐order model in the presence of a high Reynolds number, we applied a Sobolev H1 norm calibration to the POD construction process. Finally, some numerical tests with a high‐fidelity model as well as the POD reduced‐order model were carried out to demonstrate the efficiency and the accuracy of the reduced‐order model for solving the PNS equations compared with the full PNS model. Different inflow conditions and different selections of snapshots were experimented to test the POD reduction technique. The efficiency of the H1 norm POD calibration is illustrated for the PNS model with increasingly higher Reynolds numbers, along with the optimal dissipation coefficient derivation, yielding the best root mean square error and correlation coefficient between the full and reduced‐order PNS models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Reduced order modeling (ROM) provides an efficient framework to compute solutions of parametric problems. Basically, it exploits a set of precomputed high-fidelity solutions—computed for properly chosen parameters, using a full-order model—in order to find the low dimensional space that contains the solution manifold. Using this space, an approximation of the numerical solution for new parameters can be computed in real-time response scenario, thanks to the reduced dimensionality of the problem. In a ROM framework, the most expensive part from the computational viewpoint is the calculation of the numerical solutions using the full-order model. Of course, the number of collected solutions is strictly related to the accuracy of the reduced order model. In this work, we aim at increasing the precision of the model also for few input solutions by coupling the proper orthogonal decomposition with interpolation (PODI)—a data-driven reduced order method—with the active subspace (AS) property, an emerging tool for reduction in parameter space. The enhanced ROM results in a reduced number of input solutions to reach the desired accuracy. In this contribution, we present the numerical results obtained by applying this method to a structural problem and in a fluid dynamics one.  相似文献   

4.
This paper presents a parametric reduced-order model (ROM) based on manifold learning (ML) for use in steady transonic aerodynamic applications. The main objective of this work is to derive an efficient ROM that exploits the low-dimensional nonlinear solution manifold to ensure an improved treatment of the nonlinearities involved in varying the inflow conditions to obtain an accurate prediction of shocks. The reduced-order representation of the data is derived using the Isomap ML method, which is applied to a set of sampled computational fluid dynamics (CFD) data. In order to develop a ROM that has the ability to predict approximate CFD solutions at untried parameter combinations, Isomap is coupled with an interpolation method to capture the variations in parameters like the angle of attack or the Mach number. Furthermore, an approximate local inverse mapping from the reduced-order representation to the full CFD solution space is introduced. The proposed ROM, called Isomap+I, is applied to the two-dimensional NACA 64A010 airfoil and to the 3D LANN wing. The results are compared to those obtained by proper orthogonal decomposition plus interpolation (POD+I) and to the full-order CFD model.  相似文献   

5.
A model reduction approach based on Galerkin projection, proper orthogonal decomposition (POD), and the discrete empirical interpolation method (DEIM) is developed for chemically reacting flow applications. Such applications are challenging for model reduction due to the strong coupling between fluid dynamics and chemical kinetics, a wide range of temporal and spatial scales, highly nonlinear chemical kinetics, and long simulation run-times. In our approach, the POD technique combined with Galerkin projection reduces the dimension of the state (unknown chemical concentrations over the spatial domain), while the DEIM approximates the nonlinear chemical source term. The combined method provides an efficient offline–online solution strategy that enables rapid solution of the reduced-order models. Application of the approach to an ignition model of a premixed H2/O2/Ar mixture with 19 reversible chemical reactions and 9 species leads to reduced-order models with state dimension several orders of magnitude smaller than the original system. For example, a reduced-order model with state dimension of 60 accurately approximates a full model with a dimension of 91,809. This accelerates the simulation of the chemical kinetics by more than two orders of magnitude. When combined with the full-order flow solver, this results in a reduction of the overall computational time by a factor of approximately 10. The reduced-order models are used to analyse the sensitivity of outputs of interest with respect to uncertain input parameters describing the reaction kinetics.  相似文献   

6.
ABSTRACT

The purpose of this paper is the identification of a reduced order model (ROM) from numerical code output by non-intrusive techniques (i.e. not requiring projecting of the governing equations onto the reduced basis modes). In this paper, we perform a comparison between two methods of model order reduction based on dynamic mode decomposition (DMD). The first method is a deterministic (classic) DMD technique endowed with a dynamic filtering criterion of selection of modes used in the ROM model. The second method is an adaptive randomised DMD algorithm (ARDMD) based on a randomised singular value decomposition. This produced an accelerating algorithm, which is endowed with a few additional advantages. In addition, the reduced order model is guaranteed to satisfy the boundary conditions of the full model, which is crucial for surrogate modelling. For numerical illustration, we use the shallow water equations model.  相似文献   

7.
In this paper we study solutions of an inverse problem for a global shallow water model controlling its initial conditions specified from the 40‐yr ECMWF Re‐analysis (ERA‐40) data sets, in the presence of full or incomplete observations being assimilated in a time interval (window of assimilation) with or without background error covariance terms. As an extension of the work by Chen et al. (Int. J. Numer. Meth. Fluids 2009), we attempt to obtain a reduced order model of the above inverse problem, based on proper orthogonal decomposition (POD), referred to as POD 4D‐Var for a finite volume global shallow water equation model based on the Lin–Rood flux‐form semi‐Lagrangian semi‐implicit time integration scheme. Different approaches of POD implementation for the reduced inverse problem are compared, including a dual‐weighted method for snapshot selection coupled with a trust‐region POD adaptivity approach. Numerical results with various observational densities and background error covariance operator are also presented. The POD 4‐D Var model results combined with the trust‐region adaptivity exhibit similarity in terms of various error metrics to the full 4D Var results, but are obtained using a significantly lesser number of minimization iterations and require lesser CPU time. Based on our previous and current work, we conclude that POD 4‐D Var certainly warrants further studies, with promising potential of its extension to operational 3‐D numerical weather prediction models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
We consider a limited‐area finite‐element discretization of the shallow‐water equations model. Our purpose in this paper is to solve an inverse problem for the above model controlling its initial conditions in presence of observations being assimilated in a time interval (window of assimilation). We then attempt to obtain a reduced‐order model of the above inverse problem, based on proper orthogonal decomposition (POD), referred to as POD 4‐D VAR. Different approaches of POD implementation of the reduced inverse problem are compared, including a dual‐weighed method for snapshot selection coupled with a trust‐region POD approach. Numerical results obtained point to an improved accuracy in all metrics tested when dual‐weighing choice of snapshots is combined with POD adaptivity of the trust‐region type. Results of ad‐hoc adaptivity of the POD 4‐D VAR turn out to yield less accurate results than trust‐region POD when compared with high‐fidelity model. Directions of future research are finally outlined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Order reduction strategies aim to alleviate the computational burden of the four‐dimensional variational data assimilation by performing the optimization in a low‐order control space. The proper orthogonal decomposition (POD) approach to model reduction is used to identify a reduced‐order control space for a two‐dimensional global shallow water model. A reduced second‐order adjoint (SOA) model is developed and used to facilitate the implementation of a Hessian‐free truncated‐Newton (HFTN) minimization algorithm in the POD‐based space. The efficiency of the SOA/HFTN implementation is analysed by comparison with the quasi‐Newton BFGS and a nonlinear conjugate gradient algorithm. Several data assimilation experiments that differ only in the optimization algorithm employed are performed in the reduced control space. Numerical results indicate that first‐order derivative methods are effective during the initial stages of the assimilation; in the later stages, the use of second‐order derivative information is of benefit and HFTN provided significant CPU time savings when compared to the BFGS and CG algorithms. A comparison with data assimilation experiments in the full model space shows that with an appropriate selection of the basis functions the optimization in the POD space is able to provide accurate results at a reduced computational cost. The HFTN algorithm benefited most from the order reduction since computational savings were achieved both in the outer and inner iterations of the method. Further experiments are required to validate the approach for comprehensive global circulation models. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Reduced order models for the dynamics of geometrically exact planar rods are derived by projecting the nonlinear equations of motion onto a subspace spanned by a set of proper orthogonal modes. These optimal modes are identified by a proper orthogonal decomposition processing of high-resolution finite element dynamics. A three-degree-of-freedom reduced system is derived to study distinct categories of motions dominated by a single POD mode. The modal analysis of the reduced system characterizes in a unique fashion for these motions, since its linear natural frequencies are near to the natural frequencies of the full-order system. For free motions characterized by a single POD mode, the eigen-vector matrix of the derived reduced system coincides with the principal POD-directions. This property reflects the existence of a normal mode of vibration, which appears to be close to a slow invariant manifold. Its shape is captured by that of the dominant POD mode. The modal analysis of the POD-based reduced order system provides a potentially valuable tool to characterize the spatio-temporal complexity of the dynamics in order to elucidate connections between proper orthogonal modes and nonlinear normal modes of vibration.  相似文献   

11.
This paper presents a non‐intrusive reduced order model for general, dynamic partial differential equations. Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first projects the unknowns with full space and time coordinates onto a reduced POD basis. Then we introduce a new least squares fitting procedure to approximate the dynamical transition of the POD coefficients between subsequent time steps, taking only a set of full model solution snapshots as the training data during the construction. Thus, neither the physical details nor further numerical simulations of the original PDE model are required by this methodology, and the level of non‐intrusiveness is improved compared with existing reduced order models. Furthermore, we take adaptive measures to address the instability issue arising from reduced order iterations of the POD coefficients. This model can be applied to a wide range of physical and engineering scenarios, and we test it on a couple of problems in fluid dynamics. It is demonstrated that this reduced order approach captures the dominant features of the high‐fidelity models with reasonable accuracy while the computation complexity is reduced by several orders of magnitude. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The proper orthogonal decomposition (POD)‐based model reduction method is more and more successfully used in fluid flows. However, the main drawback of this methodology rests in the robustness of these reduced order models (ROMs) beyond the reference at which POD modes have been derived. Any variation in the flow or shape parameters within the ROM fails to predict the correct dynamics of the flow field. To broaden the spectrum of these models, the POD modes should have the global characteristics of the flow field over which the predictions are required. Mixing of snapshots with varying parameters is one way to improve the global nature of the modes but is computationally demanding because it requires full‐order solutions for a number of parameter values in order to assemble atextitrich enough database on which to perform POD. Instead, we have used sensitivity analysis (SA) to include the flow and shape parameters influence during the basis selection process to develop more robust ROMs for varying viscosity (Reynolds number), changing orientation and shape definition of bodies. This study aims at extending these ideas to inflow conditions to demonstrate the effectiveness of the proposed approach in capturing the effect of varying inflow on the dynamics of the flow over an elliptic cylinder. Numerical experiments show that the newly derived models allow for a more accurate representation of the flows when exploring the parameter space. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We present a solution for the tensor equation TX + XT T = H, where T is a diagonalizable (in particular, symmetric) tensor, which is valid for any arbitrary underlying vector space dimension n. This solution is then used to derive compact expressions for the derivatives of the stretch and rotation tensors, which in turn are used to derive expressions for the material time derivatives of these tensors. Some existing expressions for n = 2 and n = 3 are shown to follow from the presented solution as special cases. An alternative methodology for finding the derivatives of diagonalizable tensor-valued functions that is based on differentiating the spectral decomposition is also discussed. Lastly, we also present a method for finding the derivatives of the exponential of an arbitrary tensor for arbitrary n.  相似文献   

14.
The reduced-order finite element method (FEM) based on a proper orthogonal decomposition (POD) theory is applied to the time fractional Tricomi-type equation. The present method is an improvement on the general FEM. It can significantly save memory space and effectively relieve the computing load due to its reconstruction of POD basis functions. Furthermore, the reduced-order finite element (FE) scheme is shown to be unconditionally stable, and error estimation is derived in detail. Two numerical examples are presented to show the feasibility and effectiveness of the method for time fractional differential equations (FDEs).  相似文献   

15.
In the present work, an efficient surrogate-based framework is developed for the prediction of motion-induced surface pressure fluctuations and integral force and moment coefficients. The model construction is realized by performing forced-motion computational fluid dynamics (CFD) simulations, while the result is processed via the proper orthogonal decomposition (POD) to obtain the predominant flow modes. Subsequently, a nonlinear system identification is carried out with respect to the applied excitation and the resulting POD coefficients. For the input/output model identification task, a recurrent local linear neuro-fuzzy approach is employed in order to capture the linear and nonlinear characteristics of the dynamic system. Once the reduced-order model (ROM) is trained, it can substitute the flow solver within unsteady aerodynamic or aeroelastic simulation frameworks for a given configuration at fixed freestream conditions. For demonstration purposes, the ROM approach is applied to the LANN wing in high subsonic and transonic flow. Due to the characteristic lambda-shock system, the unsteady aerodynamic surface pressure distribution is dominated by nonlinear effects. Numerical investigations show a good correlation between the results obtained by the ROM methodology in comparison to the full-order CFD solution. In addition, the surrogate approach yields a significant speed-up regarding unsteady aerodynamic calculations, which is beneficial for multidisciplinary computations.  相似文献   

16.
17.
Model order reduction of the two‐dimensional Burgers equation is investigated. The mathematical formulation of POD/discrete empirical interpolation method (DEIM)‐reduced order model (ROM) is derived based on the Galerkin projection and DEIM from the existing high fidelity‐implicit finite‐difference full model. For validation, we numerically compared the POD ROM, POD/DEIM, and the full model in two cases of Re = 100 and Re = 1000, respectively. We found that the POD/DEIM ROM leads to a speed‐up of CPU time by a factor of O(10). The computational stability of POD/DEIM ROM is maintained by means of a careful selection of POD modes and the DEIM interpolation points. The solution of POD/DEIM in the case of Re = 1000 has an accuracy with error O(10?3) versus O(10?4) in the case of Re = 100 when compared with the high fidelity model. For this turbulent flow, a closure model consisting of a Tikhonov regularization is carried out in order to recover the missing information and is developed to account for the small‐scale dissipation effect of the truncated POD modes. It is shown that the computational results of this calibrated ROM exhibit considerable agreement with the high fidelity model, which implies the efficiency of the closure model used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Fluid flows are very often governed by the dynamics of a mall number of coherent structures, i.e., fluid features which keep their individuality during the evolution of the flow. The purpose of this paper is to study a low order simulation of the Navier–Stokes equations on the basis of the evolution of such coherent structures. One way to extract some basis functions which can be interpreted as coherent structures from flow simulations is by Proper Orthogonal Decomposition (POD). Then, by means of a Galerkin projection, it is possible to find the system of ODEs which approximates the problem in the finite-dimensional space spanned by the POD basis functions. It is found that low order modeling of relatively complex flow simulations, such as laminar vortex shedding from an airfoil at incidence and turbulent vortex shedding from a square cylinder, provides good qualitative results compared with reference computations. In this respect, it is shown that the accuracy of numerical schemes based on simple Galerkin projection is insufficient and numerical stabilization is needed. To conclude, we approach the issue of the optimal selection of the norm, namely the H 1 norm, used in POD for the compressible Navier–Stokes equations by several numerical tests. Received 21 April 1999 and accepted 18 November 1999  相似文献   

19.
A tool to analyse correlated events in turbulent flows based on an extended proper orthogonal decomposition (POD) is proposed in this paper. A general definition of extended POD modes is presented and their properties are demonstrated. If the initial POD analysis in a spatio-temporal domain S concerns, for example, velocity—the concept of extended modes can be applied to study the correlation of any physical quantity in any domain with the projection of the velocity field on POD modes in S. The link with particular associations of POD and linear stochastic estimation (LSE) recently proposed is demonstrated at the end of the paper. The method is believed to provide a valuable tool to extend the well-documented POD analysis of eddy structures in turbulent flows, for example, in boundary layers or free shear flows. If extended modes are velocity modes, spatial and temporal interactions between eddy structures can be detected and studied. The rapid development of experimental diagnostic techniques now permit measurements of the concentration in the domain, the velocity of a dispersed phase in the domain or the static pressure at the boundary together with the fluid velocity field. Using this method we are then able to extract objectively the link between the representative groups of velocity modes and the correlated part of the concentration, particle motion or pressure signals.  相似文献   

20.
A surrogate model, based on proper orthogonal decomposition (POD) with the adaptive sampling method, was proposed to predict the transitional flow past rough flat plates simulated by a four-equation k-ω-γ-Ar transition model. Gaussian process regression was used to map the input parameters to the POD expansion coefficients. The variance and gradient of Gaussian process were taken as the criteria for the adaptive sampling. The proposed methodology was applied to a one-dimensional heat conduction problem and two-dimensional transitional flow past rough flat plates. At the same time, the results were compared with those of Halton sequences. With the same sample size, the adaptive method achieved a higher accuracy on the test set, and the proposed adaptive criterion could serve as an indicator for the model discrepancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号