首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of new amphiphilic polyesters based on poly(ethylene glycol) (PEGs) and studies on their solution properties are reported. Two novel monomers, dimethyl 5-n-butoxy isophthalate (2) and dimethyl 5-n-octoxy isophthalate (3) were synthesized. Three series of novel amphiphilic polyesters, i.e. poly(ethyleneoxy isophthalate)s (10-15), poly(ethyleneoxy n-butoxy isophthalate)s (16-21) and poly(ethyleneoxy n-octoxy isophthalate)s (22-27) have been synthesized from PEGs of different sizes and dimethyl isophthalates 1-3 via the transesterification-polycondensation using dibutyltin diacetate as a catalyst. The structures of the polyesters were established from a detailed analysis of their spectra, i.e. FTIR, 1H-NMR (one- and two-dimensional) and 13C-NMR. By adjusting the ratio of hydrophobic (diesters) and hydrophilic (PEGs) segments in polymers, their main chain structures and solution properties could be changed. The viscosity molecular weights (Mv) of polymers, obtained from Mark-Houwink-Sakurada relationship having poly(ethylene terephthalate) as a model, were in the range of 4500-32,000 g/mol. Intrinsic viscosities were studied based on polymer backbone length (PEGs effect) and pendant group (diesters effect) and these were found to be dependent on molecular weights of the PEGs used.  相似文献   

2.
Several electrospray mass spectrometry (ESI-MS) techniques have been described during the past years to enable the characterization work of large poly(ethylene glycol)s (PEGs) and PEGylated proteins. The proton transfer reaction ESI-MS method utilizes amines to charge reduce the electrospray envelope of PEGs, hence PEG molecules are aminated instead of protonated. This method simplifies the mass spectrum of large PEGs, and enables the interpretation of the charge state of the observable envelopes (R ≥ 3,000 (FWHM) measured at the (M + 6H)6+ ion from 40 K PEG compound 7,324.19). Hence, deconvolution of the MS data can be performed and relative molecular masses of the individual chain lengths of the PEGs can be calculated. However, as the poly-dispersity of PEGs may vary from batch to batch and from sample to sample, it was of interest to examine if the method could distinguish between these kinds of different material. Therefore, sample materials of each intermediate obtained at five synthetic steps during synthesis of a 40 kDa PEG molecule were collected. These four intermediates, starting material and the target molecule were examined by 1H-NMR spectroscopy and ESI-MS using a proton stripping base. The study revealed that the charge-stripping ESI-MS method is able to differentiate between even small changes in the structure of the polymeric molecules only when the analysis is assisted by 1H-NMR spectroscopy. A proper characterization of polymer molecules requires besides relative molecular mass, also poly-dispersity and end-group characterization. No end-group information is obtained based on MS data. Examination of the PEG polymers by 1H-NMR spectroscopy provides the needed information. In addition, the 1H-NMR spectra clearly distinguishes the examined polymers.  相似文献   

3.
A novel natural-synthetic hybrid block copolymer was synthesized by Aeromonas hydrophila 4AK4 in poly(ethylene glycol)(PEG,M_n=200) modified fermentation.This hybrid biomaterial consists of the natural hydrophobic polymer poly(3-hydroxybutyrat-co-3-hydroxyhexanoate)(PHBHHx) end-capped with hydrophilic PEG,which has the increased flexibility as well as the improved thermal stability.Addition of diethylene glycol(DEG) and ethylene glycol could not result in the accumulation of hybrid block copolymer.DEG and ethylene glycol,together with PEG-200,could cause a reduction of molar mass of PHBHHx,resulting in a series of low molecular weight polymer and the reduction of the polymer yield as well as the cellular productivity.In vitro degradation of PHBHHx and PHBHHx-PEG with different molecular weight showed that the decrease of molecular weight accelerated the degradation of copolymers,but PEG modification has little effect on its degradation rate.The results in this study provided a convenient and direct method to produce a series of PHBHHx and PHBHHx-PEG materials with adjustable molecular weight and broad molecular weight distribution which will be very useful for the biomedical applications.  相似文献   

4.
This article reports our discovery that poly(ethylene glycol) (PEG) can quantitatively be functionalized by transesterification using Candida antarctica lipase B (Novozyme 435) as the catalyst. α‐ω telechelic PEG‐methacrylates and PEG‐acetates were successfully prepared using commercially available PEGs with both narrow and broad molecular weight distribution. 1H and 13C NMR together with MALDI‐TOF mass spectroscopy verified the expected structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3024–3028, 2008  相似文献   

5.
Optically active polyurethane was synthesized by the polyaddition of (2R, 3R)-(+)-diethyl L-tartrate (DET), 4,4'-diphenylmethane diisocyanate (MDI) and polyethylene glycol (PEG) with variousmolecular weights at 60℃in DMSO. The polymers were characterized by specific rotation, DSC and ~1HNMR spectra.  相似文献   

6.
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf‐PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and defined with state‐of‐the‐art characterization techniques—for example real‐time 1H NMR spectroscopy monitoring of the EO polymerization kinetics—this emerging class of polymers embodies a powerful platform for bio‐ and drug conjugation.  相似文献   

7.
The crystal structures and absolute configurations of (6R,7R,14S)-6,14-etheno-7-[(1R)-1-hydroxyethyl]-6,7,8,14-tetrahydro-17-nor-17-phenylthebaine and (6R,7R,14S)-6,14-etheno-7-[(1S)-1-hydroxyethyl]-6,7,8,14-tetrahydro-17-nor-17-phenylthebaine were established by X-ray diffraction analysis. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2245–2250, November, 1998.  相似文献   

8.
Summary: Poly(alkylene hydrogen phosphonate)s with a number‐average molecular weight of about 3 000 Da were obtained by a transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol) (PEG 400) under microwave irradiation with a very short reaction time (55 min) relative to that of classical thermal heating (9 h). The structure of the resulting polymer was confirmed by 1H, 31P, and 13C NMR spectroscopy. The molecular weight was determined by 1H, 31P{H} NMR spectroscopy, MALDI‐TOF, and GPC.

The transesterification of dimethyl hydrogen phosphonate with poly(ethylene glycol).  相似文献   


9.
The hydroxyl end groups of poly(ethylene glycol) (PEG) have been transformed easily and quantitatively into amino groups via the Mitsunobu reaction. Phthalimide was alkylated with PEGs and the hydrazinolysis of the resulting phthalimido‐PEGs gave the amino compounds in high yields. Quaternization of the amino groups leads to hydrophilic polymer chains bearing a positive charge on one or two ends, depending on the chosen PEG. Such products can be used to protect sterically, negatively charged particles such as clays.

  相似文献   


10.
Summary The crystal structure of (–)-diphenylethanediammonium-(R,R)-tartrate was determined. From this structure determination, the (S,S) configuration was assigned to the (–)-diphenylethanediamine. The asymmetric unit of the crystal structure contains two units of the title compound plus one molecule of ethanol and one water molecule, which form an intricate network of 19 hydrogen bonds.
Die Kristallstruktur von (S,S)-Diphenylethandiammonium-(R,R)-tartrat
Zusammenfassung Es wurde die Kristallstruktur von (–)-Diphenylethandiammonium-(R,R)-tartrat bestimmt. Aus dieser Strukturbestimmung ergab sich die Zuordnung der (S,S)-Konfiguration zum (–)-Diphenylethandiamin. Die asymmetrische Einheit der Kristallstruktur besteht aus zwei Formeleinheiten der Titelverbindung sowie einem Molekül Ethanol und einem Wassermolekül, welche ein komplexes Netzwerk von insgesamt 19 Wasserstoffbrücken bilden.
  相似文献   

11.
An efficient synthesis of enantiomerically pure (R)- and (S)-2-(aminomethyl)alanine ((R)- and (S)-Ama) 1a and (R)- and (S)-2-(aminomethyl)leucine ((R)- and (S)-Aml) 1b is described (Schemes 1 and 2). Resolution of the racemic amino acids was achieved using L -phenylalanine cyclohexylamide ( 2 ) as chiral auxiliary. The free amino acids 1a, b were converted to the Nα-Boc,Nγ-Z-protected derivatives 11a, b (Scheme 3) ready for incorporation into peptides. Based on the three crystal structures of the diastereoisomeric peptides 8a, 8b , and 9b , the absolute configurations in both series were determined. β-Turn type-I geometries were observed for structures 8b and 9b , whereas 8a crystallized in an extended backbone conformation.  相似文献   

12.
The copolymer membranes, poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by phase inversion method using poly(ethylene glycol) (PEG) as an additive with acetone or dimethyl formamide as solvent. The morphology of the membranes has been greatly varied with the composition of the polymer and solvent. The ionic conductivity of the membranes were measured at various temperatures (−30 to 50 °C). The prepared membranes have been employed as separators in LiCoO2/Li cells and were subjected to charge-discharge studies at 0.2 C - rate. The polymer membrane prepared with a ratio of PVdF-HFP (50):PEG (50) using dimethyl formamide as solvent delivered higher discharge capacity than the membranes prepared with acetone as solvent.  相似文献   

13.
(R)- and (S)-4-Amino-3-methylbutanoic acids were synthesized in high yields via initial enantioselective hydrolysis of dimethyl 3-methylglutarate to methyl (R)-3-methylglutarate with pig liver esterase. The ester group was converted to an amine to give (R)-4-amino-3-methylbutanoic acid; the carboxylic acid was converted to an amine to give (S)-4-amino-3-methylbutanoic acid.  相似文献   

14.
The crystal structure and absolute configuration of a molecular host/guest/impurity inclusion complex were established unequivocally in spite of our having no prior knowledge of its chemical composition. The host (4R,5R)‐4,5‐bis(hydroxydiphenylmethyl)‐2,2‐dimethyl‐1,3‐dioxolane, (I), displays expected conformational features. The crystal‐disordered chiral guest 4,4a,5,6,7,8‐hexahydronaphthalen‐2(3H)‐one, (II), is present in the crystal 85.1 (4)% of the time. It shares a common site with 4a‐hydroperoxymethyl‐4,4a,5,6,7,8‐hexahydronaphthalen‐2(3H)‐one, (III), present 14.9 (4)% of the time, which is the product of autoxidation of (II). This minor peroxide impurity was isolated, and the results of nuclear magnetic resonance, mass spectrometry, and X‐ray fluorescence studies are consistent with the proposed structure of (III). The complete structure was therefore determined to be (4R,5R)‐4,5‐bis(hydroxydiphenylmethyl)‐2,2‐dimethyl‐1,3‐dioxolane–4,4a,5,6,7,8‐hexahydronaphthalen‐2(3H)‐one–4a‐hydroperoxymethyl‐4,4a,5,6,7,8‐hexahydronaphthalen‐2(3H)‐one (1/0.85/0.15), C31H30O4·0.85C10H14O·0.15C10H14O3, (IV). There are host–host, host–guest, and host–impurity hydrogen‐bonding interactions of types S and D in the solid state. We believe that the crystals of (IV) were originally prepared to establish the chirality of the guest (II) by means of X‐ray diffraction analysis of host/guest crystals obtained in the course of chiral resolution during cocrystallization of (II) with (I). In spite of the absence of `heavy' elements, the absolute configurations of all anomeric centres in the structure are assigned as R based on resonant scattering effects.  相似文献   

15.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


16.
Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)2 as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M n  = 4000 g mol−1) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)2 in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.  相似文献   

17.
rel-(2R,3R)-N-Benzoylamino-6,7-bis(methoxycarbonyl)-2,3-dihydro-1-oxo-1H,5H-pyrazolot[1,2-a]-pyrazoles 5 , accesible by cycloaddition of dimethyl acetylenedicarboxylate ( 3 ) to (1Z)-rel-(4R,5R)-1-aryl-methylidene-4-benzoylamino-5-phenyl-3-pyrazolidinone-1-azomethine imines 4 , undergo oxidative ring cleavage with methanolic bromine giving rel-(2R,3R)-N-benzoyl-3-phenyl-3-[5-aryl-3,4-bis(methoxy-carbonyl)pyrazolyl-1]alanine methyl esters 6 as products.  相似文献   

18.
An amphiphilic interpenetrating polymer network hydrogel was designed and synthesized using click chemistry and ferric ion coordination. The first polymer network was formed through the reaction of azide‐modified PEG (N3‐PEGn‐N3) and alkynyl‐pendant linear PPG derivatives ((PPGm(C≡CH))n) through click chemistry and mixed with poly(ethylene glycol‐dopamine) macromolecules. The second polymer network was formed through ferric ion coordination with poly(ethylene glycol‐dopamine). Interpenetrating polymer networks give the hydrogel unique amphiphilic properties and higher mechanical strength and thermal stability. Swelling ratio and degradation rate could be adjusted by controlling the ratio of poly(ethylene glycol‐dopamine) in the hydrogel network. Given that in vivo subcutaneous implantation revealed no infection and no obvious abnormalities, the hydrogel exhibits high biocompatibility. The feature indicates that these hydrogels have a promising application in the field of biomaterials and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A synthesis and the determination of the absolute configuration of (?)-(1S, 3R′ 6R, 8R)-2, 7-dioxa-isotwistane ( 13 ) and (?)-(1R, 3R, 6R, 8R)-2, 7-dioxa-twistane ( 14 ) is described. The results for 14 are compared with those for carboeyclic (+)-twistane ( 2 ) of known chirality.  相似文献   

20.
Fe2(CO)9 and R2P(S)P(S)R2 (R = Et, n-Pr, n-Bu, Ph) react to form two types of cluster complexes Fe3(CO)93-S)2 (1), Fe2(CO)6(μ-SPR2)2 (2A)–(2D), [2A, R = Et; 2B, R = n-Pr; 2C, R = n-Bu; 2D, R = Ph]. The complexes result from phosphorus–phosphorus bond scission; in the former sulfur abstraction has also occurred. The complexes have been characterized by elemental analyses, FT-IR and 31P-[1H]-NMR spectroscopy and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号