首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved synthesis of a water-soluble deep-cavity cavitand (octa-acid, 1) is presented. Previously (Gibb, C.L.D.; Gibb, B.C. J. Am. Chem. Soc. 2004, 126, 11408–11409), we documented access to host 1 in eight (non-linear) steps starting from resorcinol; a synthesis that required four steps involving chromatographic purification. Here, we reveal a modified synthesis of host 1. Consisting of seven (non-linear) steps, this new synthesis involves only one chromatographic step, and avoids a minor impurity observed in the original approach. This improved synthesis is therefore useful for the laboratories that are investigating the properties of these types of host.  相似文献   

2.
Mixed acetals 7 of benzeneseleninylacetaldehyde, prepared by a simple 2-step procedure from mono- and bicyclic allylic alcohols 5 , undergo benzeneselenenic acid elimination to transient ketene acetals 8 which afford γ, δ-unsaturated esters 9 via the ester Claisen rearrangement (Scheme 2). Under the same conditions selenoxide 7h derived from benzyl alcohol 5h is converted back to benzyl alcohol with the concomitant formation of ethylphenylselenoacetate 12 .  相似文献   

3.
Nonaqueous solution routes to metal oxide nanoparticles are a valuable alternative to the well-known aqueous sol-gel processes, offering advantages such as high crystallinity at low temperatures, robust synthesis parameters and ability to control the crystal growth without the use of surfactants. In the first part of the review, we give an overview of the various nonaqueous routes to metal oxides, their surface functionalization and their assembly into well-defined nanostructures. However, we will strongly focus on surfactant-free processes developed in our group. Within the various reaction systems such as metal halides—benzyl alcohol, metal alkoxides—benzyl alcohol, metal alkoxides—ketones, metal acetylacetonates—benzyl alcohol and metal acetylacetonates—benzylamine we will discuss representative examples in order to show the versatility of this approach. The careful characterization of the organic species in the final reaction mixtures provides information about possible condensation mechanisms. Depending on the system several reaction pathways have been postulated: (i) elimination of organic ethers as result of condensation between two metal alkoxide precursors; (ii) C–C bond formation between the alkoxy ligand of the metal alkoxide precursor and the solvent benzyl alcohol under formation of a metal hydroxyl species, which can undergo further condensation; (iii) ketimine and aldol-like condensation steps, which in the metal acetylacetonate systems are preceded by a solvolysis of the precursor, involving C–C bond cleavage. In the second part of the paper we will focus on the synthesis of indium oxide nanoparticles using different precursors and solvents. Indium oxide represents an instructive example how the oxide precursors and the solvents influence the particle morphology. These findings make it possible to tailor particle size and shape of a particular metal oxide by the appropriate choice of the reaction system.  相似文献   

4.
Junwei Xi  Zhenhua Gu 《中国化学》2020,38(10):1081-1085
Isoplagiochin D is a ring‐strained macrocyclic bisbibenzylis, which showed stable axial chirality in one biaryl structure, and semistable axial chirality in the other biaryl moiety. We reported here an unprecedented example for the catalytically asymmetric synthesis of ring‐strained atropisomers via Pd‐catalyzed macrocyclization between benzyl halides and carbenes. This newly developed Pd‐catalyzed asymmetric macrocyclization protocol enabled us a quick synthesis of isoplagiochin D in a highly enantioselective manner.  相似文献   

5.
Moiseev DV  James BR  Hu TQ 《Inorganic chemistry》2006,45(25):10338-10346
With the aim of learning more about the bleaching action of pulps by (hydroxymethyl)phosphines, we reacted several benzaldehydes, containing MeO, Me, OH, or halogen substituents, with tris(3-hydroxypropyl)phosphine, [HO(CH2)3]3P, in aqueous solution at 90 degrees C under argon. Effective reduction of the aldehydes to the corresponding benzyl alcohols with concomitant oxidation of the phosphine to the phosphine oxide takes place, the reaction proceeding via an initially formed phosphonium species. When the reactions are carried out in D2O, the benzyl alcohol product from 3,4-dimethoxybenzaldehyde contains one deuterium atom at the benzyl-carbon atom, consistent with the last step of the mechanism involving a carbanion intermediate. With syringaldehyde (3,5-dimethoxy-4-hydroxy-benzaldehyde), the reduction product (syringyl alcohol) is more reactive toward the phosphine than is the starting aldehyde, and a zwitterionic, phosphobetaine product is formed. In D2O, the zwitterion benzyl protons and protons of the hydroxypropyl-CH2 adjacent to the P atom undergo H/D exchange via presumed phosphorus ylide intermediates. Under the same aqueous reaction conditions, tris(3-hydroxypropyl)phosphine, [HO(CH2)3]3P (THPP), does not undergo redox reactions with aliphatic aldehydes but simply promotes a base-catalyzed self-condensation (aldol) reaction. THPP reduction of an aromatic ketone is sluggish, presumably because the carbonyl C-atom is less electrophilic than that present in an aromatic aldehyde.  相似文献   

6.
Polymethylhydrosiloxane (PMHS) reacts with aliphatic and aromatic alcohols at room temperature in the presence of [CuH(PPh3)]6 complex catalyst to give poly[(methyl) (alkoxy)siloxane]s in high yields. Reactivity of alcohols decreases in the order of p‐methoxyphenol > p‐cresol > phenol > benzyl alcohol > allyl alcohol > ethanol > isopropanol > tert‐butyl alcohol. Partially p‐cresylated polymers, which still retain unreacted Si? H bonds, react further with ethylene glycol or water to form cross‐linked polymers, which, depending on the extent of cross linking, gelate during the cross‐linking process. Propargyl alcohol reacts with PMHS very rapidly to give exhaustively and partially propargyloxylated PMHS. Resulting polymers, upon heating, undergo crosslinking. Partially propargyloxylated polymers display high thermal stability [Td5 (temperature of 5% weight loss) > 500 °C] as compared with starting PMHS (243 °C) and exhaustively propargyloxylated one (414 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Luminescent 3D lanthanide metal–organic framework (Ln‐MOF) {[Tb2(TATAB)2] ? 4 H2O ? 6 DMF}n ( 1 ) was synthesized under solvothermal conditions by using flexible ligand 4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐p‐aminobenzoate (TATAB). A phase transition was observed between low temperature and room temperature. The luminescence of 1 could be enhanced by formaldehyde and quenched efficiently by trace amounts of benzaldehyde in solvents such as benzyl alcohol (0.01–2.0 vol %) and ethanol (0.01–2.5 vol %). This is the first use of a Ln‐MOF as chemical sensor for both formaldehyde and benzaldehyde. The high sensitivity and selectivity of the luminescence response of 1 to benzaldehyde allows it to be used as an excellent sensor for identifying benzaldehyde and provides a simple and convenient method for detecting traces of benzaldehyde in benzyl alcohol based injections. This work establishes a new strategy for detection of benzaldehyde in benzyl alcohol by luminescent MOFs.  相似文献   

8.
The use of kinetic energy release measurements in the structural characterization of ions formed in the mass spectrometer and in the determination of fragmentation mechanisms is demonstrated. In combination with information on the mode of energy partitioning in some of these reactions this allows the following conclusions: (i) The metastable [C7H8]8˙ ions formed from toluene, cyclohepatatriene, n-butylbenzene, the three methyl anisoles, methyl tropyl ether and benzyl methyl ether all undergo loss of H˙ from a common structure. (ii) The metastable [C7H7]+ ions generated from the same sources and from benzyl bromide, benzyl alcohol, p-xylene and ethylbenzene appear to undergo loss of acetylene from both the benzylic and the tropylium structures. (iii) The metastable [C7H7OCH3]+˙ ether molecular ions undergo loss of CH3˙ by two types of mechanism, simple cleavage to give the aryloxy cation (not observed for benzyl methyl ether) and a rearrangement process which appears to lead to protonated tropone as the product. (iv) Loss of formaldehyde from the metastable [C7H7OCH3]+˙ molecular ions involves hydrogen transfer via competitive 4- and 5-membered cyclic transition states in the case of the anisoles and in the case of methyl tropyl ether, while for benzyl methyl ether, hydrogen transfer in the nonisomerized molecular ion occurs via a 4-membered cyclic transition state to yield the cycloheptatriene molecular ion.  相似文献   

9.
Benzyl alcohol is a naturally occurring aromatic alcohol and has been widely used in the cosmetics and flavor/fragrance industries. The whole‐cell biotransformation for synthesis of benzyl alcohol directly from bio‐based L‐phenylalanine (L‐Phe) was herein explored using an artificial enzyme cascade in Escherichia coli. Benzaldehyde was first produced from L‐Phe via four heterologous enzymatic steps that comprises L‐amino acid deaminase (LAAD), hydroxymandelate synthase (HmaS), (S)‐mandelate dehydrogenase (SMDH) and benzoylformate decarboxylase (BFD). The subsequent reduction of benzaldehyde to benzyl alcohol was achieved by a broad substrate specificity phenylacetaldehyde reductase (PAR) from Solanum lycopersicum. We found the designed enzyme cascade could efficiently convert L‐Phe into benzyl alcohol with conversion above 99%. In addition, we also examined L‐tyrosine (L‐Tyr) and m‐fluoro‐phenylalanine (m‐f‐Phe) as substrates, the cascade biotransformation could also efficiently produce p‐hydroxybenzyl alcohol and m‐fluoro‐benzyl alcohol. In summary, the developed biocatalytic pathway has great potential to produce various high‐valued fine chemicals.  相似文献   

10.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   

11.
Hydrostatic pressure causes a monophasic decrease in the (13)C primary isotope effect expressed on the oxidation of benzyl alcohol by yeast alcohol dehydrogenase. The primary isotope effect was measured by the competitive method, using whole-molecule mass spectrometry. The effect is, therefore, an expression of isotopic discrimination on the kinetic parameter V/K, which measures substrate capture. Moderate pressure increases capture by activating hydride transfer, the transition state of which must therefore have a smaller volume than the free alcohol plus the capturing form of enzyme [Cho, Y.-K.; Northrop, D. B. Biochemistry 1999, 38, 7470-7475]. The decrease in the (13)C isotope effect with increasing pressure means that the transition state for hydride transfer from the heavy atom must have an even smaller volume, measured here to be 13 mL.mol(-1). The pressure data factor the kinetic isotope effect into a semiclassical reactant-state component, with a null value of k(12)/k(13) = 1, and a transition-state component of Q(12)/Q(13) = 1.028 (borrowing Bell's nomenclature for hydrogen tunneling corrections). A similar experiment involving a deuterium isotope effect previously returned the same volume and null value, plus a pressure-sensitive isotope effect [Northrop, D. B.; Cho, Y.-K. Biochemistry 2000, 39, 2406-2412]. Consistent with precedence in the chemical literature, the latter suggested a possibility of hydrogen tunneling; however, it is unlikely that carbon can engage in significant tunneling at ambient temperature. The fact that the decrease in activation volumes for hydride transfer is equivalent when one mass unit is added to the carbon end of a scissile C-H bond and when one mass unit is added to the hydrogen end is significant and suggests a common origin.  相似文献   

12.
Oxidation-induced micellization was attained for a diblock copolymer containing 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO). Poly(4-vinylbenzyloxy-TEMPO)-block-polystyrene (PVTEMPO-b-PSt) showed no self-assembly in carbon tetrachloride, a nonselective solvent. Dynamic light scattering demonstrated that the copolymer self-assembled into micelles of 49.5-nm hydrodynamic diameter when chlorine gas was added to the copolymer solution. The UV and electron spin resonance (ESR) analyses verified that as TEMPO was oxidized into the one-electron oxidant, that is, oxoaminium chloride (OAC) by the chlorine, the nonamphiphilic block copolymer became amphiphilic in nature, and thus, the polymers underwent micellization. An investigation of the relation between the micellization and the oxidation degree of the TEMPO into the OAC revealed that the micellization was induced by only 16% of the OAC. It was confirmed that the POAC-b-PSt micelles were spherical in shape by transmission electron microscopy observation. The micelles served as a two-electron oxidizing agent for benzyl alcohol to quantitatively give benzaldehyde. The micellar structure was maintained after the oxidation of benzyl alcohol without any dissociation into unimers because the OAC was converted into an insoluble hydroxylamine–hydrochloride salt. On the other hand, the micelles reacted with N,N,N′,N′-tetramethyl-1,4-phenylenediamine (TMPD) to produce Wurster’s blue chloride by a one-electron transfer from TMPD to the OAC, converting themselves into PVTEMPO-b-PSt unimers.  相似文献   

13.
C−F Insertion reactions represent an attractive approach to prepare valuable fluorinated compounds. The high strength of C−F bonds and the low reactivity of the fluoride released upon C−F bond cleavage, however, mean that examples of such processes are extremely scarce in the literature. Here we report a reaction system that overcomes these challenges using hydrogen bond donors that both activate C−F bonds and allow for downstream reactions with fluoride. In the presence of hexafluoroisopropanol, benzyl and propargyl fluorides undergo efficient formal C−F bond insertion across α-fluorinated styrenes. This process, which does not require any additional fluorinating reagent, occurs under mild conditions and delivers products featuring the gem-difluoro motif, which is attracting increasing interest in medicinal chemistry. Moreover, readily available organic bromides can be engaged directly in a one-pot process that avoids the isolation of organic fluorides.  相似文献   

14.
R.J. Abraham  J.M. Bakke 《Tetrahedron》1978,34(19):2947-2951
The conformations of benzyl alcohol, the ortho and para nitro and methoxy derivatives and benzyl methyl ether have been investigated by NMR in CCL4 and DMSO solutions. The 3J(CH.OH) and 2J(H.C.H) couplings (the latter via the 2J(H.C.D)coupling)and the OH chemical shift (in DMSO and ∞ dilXXX as conformational probes. The δ (OH) for ROH (R = Me, Et, iPr) is also given.The results provide no support for the existence of an intramolecular H-bond in benzyl akohol The endo conformation of the OH proton (anti to a CH proton) is favoured by ca. 1 kcal mole?1 over the exo conformation (H anti to phenyl) and these conformers are responsible for the separate OH frequencies observed in the IR spectrum. The results do not support an extreme conformation of the phenyl ring (C.C.C.O dihedrals of 0 or 90°) but are consistent with either an 6?0° conformation of the phenyl ring or a freely rotating model. In ortho nitrobenzyl alcohol intramolecular H-bonding is present, but in ortho methoxy benzyl alcohol little or no bonding to the substituent occurs.  相似文献   

15.
A kinetic study of the initiated oxidation of benzyl alcohol and cumene by molecular oxygen was performed. The oxidation rate was more enhanced with N-hydroxyphthalimide (NHPI) in the case of cumene than that of benzyl alcohol. HOOH inhibits cumene oxidation and does not affect the rate of oxidation of benzyl alcohol. It was shown that termination chain reactions of phthalimid-N-oxyl radicals (PINO) does not occur with RОО and proceeds with HOO. A kinetic scheme of the process and an equation describing the kinetics of oxidation of benzyl alcohol in the presence of NHPI are proposed. Using the PM7 method, the thermodynamic characteristics of elementary steps of oxidation explaining the obtained results were calculated.  相似文献   

16.
A new method for synthesizing phenolic N-benzylazacyclophanes starting from tyramine is presented here. Computational calculations showed that macrocyclization is favored by the formation of hydrogen bond-based templates; these templates are not affected by including benzyl groups in the nitrogen atom of the tyramine moiety. The results showed that N-benzyl groups with electron-donating substituents have more nucleophilic nitrogen atoms, thereby favoring macrocyclization, while electron-withdrawing groups favor polymerization.  相似文献   

17.
A new kind of surfactant, [CnH_(2n+1)OCH2CH(OH)CH2N(CH3)3]Cl (n=12, 14, 16) was synthesized. The solubility of benzyl alcohol in micellar solutions was determined by 1H NMR method. The results indicate that the length of alkyl chains of surfactant affects the solubility of ben-zyl alcohol in 2.5 × l0~(-2) mol/L micellar solutions. The solubility of benzyl alcohol per liter of micellar solution is 0.095 mole for n=12, 0.115 mole for n=14, 0.165 mole for n=16. The transfer free energy of benzyl alcohol from aqueous phase to micellar phase is -24.29 kJ/mol for n=12, -24.37 kJ/mol for n=14, -24.49 kJ/mol for n=16.  相似文献   

18.
《合成通讯》2013,43(10):1733-1750
Abstract

Aromatic esters, including the extremely sterically hindered ester: t-amyl 2-chlorobenzoate, are readily reduced to the corresponding benzyl alcohols in high yield with NaBH4 in refluxing diglyme (162°C). In sharp contrast, aliphatic esters usually gave only low yields of alcohols. Instead, diglyme fragmentation products are formed which undergo transesterification reactions, producing complex product mixtures including products such as RCOOCH2CH2OCH3. The mechanism of this process involves sodium borohydride-induced SN2 cleavage of diglyme (hydride attack) at high temperatures. However, when the extremely electron rich, 3,4,5-trimethoxybenzoic acid is treated with NaBH4/diglyme at 162°C (with or without an equivalent of LiCl), no 3,4,5-trimethyoxybenzyl alcohol is formed. The electron rich and hindered ester, t-amyl-3,4,5-trimethoxybenzoate, also does not reduce under these conditions (with or without LiCl). However, both methyl and isopropyl 3,4,5-trimethoxybenzoate esters were converted into 3,4,5-trimethyoxybenzyl alcohol in good yields in NaBH4/diglyme/LiCl at 162°C. These reductions did not occur unless LiCl was present, illustrating the electron releasing effect of the three methoxy functions which reduce the carbonyl group's reactivity.  相似文献   

19.
Synthesis of (±)-Lasiodiplodin The synthesis of the plant growth inhibitor (±)-lasiodiplodin (VII), a 12 membered lactone of a substituted resorcylic acid is described. Condensation of methyl acetoacetate and methyl 11-hydroxy-2-undecenoate followed by treatment of the product with benzyl alcohol lead to the benzyl ether II which was aromatized via the benzeneselenenyl derivative. Methylation of the phenolic hydroxyl in III and conversion of the primary alcohol in the side chain into the secondary alcohol provided the hydroxy ester IV. The corresponding hydroxy acid V was transformed into the S-(2-pyridyl) carbothioate which cyclized under the influence of silver ions to yield 68% of 4-benzyl-lasiodiplodin (VI). Removal of the benzyl group by catalytic hydrogenation gave (±)-lasiodiplodin (VII).  相似文献   

20.
The total synthesis of the potent new antibiotic disciformycin B ( 2 ) is described, which shows significant activity against methicillin‐ and vancomycin‐resistant Staphylococcus aureus (MRSA/VRSA) strains. The synthetic route is based on macrocyclization of a tetraene substrate to the 12‐membered macrolactone core by ring‐closing olefin metathesis (RCM). Although macrocyclization was accompanied by concomitant cyclopentene formation by an alternative RCM pathway, conditions were established to give the macrocycle as the major product. Key steps in the construction of the RCM substrate include a highly efficient Evans syn‐aldol reaction, the asymmetric Brown allylation of angelic aldehyde, and the stereoselective Zn(BH4)2‐mediated 1,2‐reduction of an enone. The synthesis was completed by late‐stage dehydrative glycosylation to introduce the d ‐arabinofuranosyl moiety and final chemoselective allylic alcohol oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号