首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
An extracellular galactoglucoxylomannan protein composed of d-galactose, d-glucose, d-xylose and d-mannose in a 2.9:1.0:1.1:10.2 mole proportion has been isolated from culture medium of Cryptococcus laurentii var. laurentii. The polymer of number average molecular mass 19,000 contained 86% carbohydrates, 6.5% protein and 0.7% phosphorus. Results of structural analyses suggested a highly branched comb-like structure of the polysaccharide with a backbone composed of 6-linked α-d-Man residues. Mannose units of the backbone are highly branched at O-2, O-3, and O-4 by side chains composed mainly of 2-linked α-d-Man mostly in the form of dimers and trimers, and to a lesser amount as tetra- and pentamers. Galactosyl units were found to be mostly 6-linked with a very low degree of substitution. Mannose side chains are further branched with d-Xyl, d-Glc, and d-Gal residues preferably in β their forms. The protein part of the glycoprotein was O-glycosylated by mannose, mannobiose, and mannotetrose.  相似文献   

2.
Abstract

A series of three oligosaccharides, α-d-Glc-(1→4)-β-d-GlcA-1ωe, β-d-GlcA-(1→4)-α-d-Glc-(1→4)-β-d-GlcA-lωe and α-d-Glc-(1→4)-β-d-GlcA-(1→4)-α-d-Glc-(1→4)-β-d-GlcA-1ωe was prepared by a short synthetic route, using maltose and glucuronic acid derivatives as starting materials. The oligosaccharides contain glucose residues instead of glucosamines, and have a less complicated structure than the corresponding unsulphated structures found in native heparin and heparan sulphate. This simplification in structure has diminished the number of synthetic steps and raised the total yield compared to the preparation of the corresponding heparin/heparan sulphate structures which have been found to bind acidic and basic FGF.  相似文献   

3.
Abstract

An efficient chemoenzymatic synthesis of methyl α-d-allopyranoside and methyl 3-deoxy-α-d-ribo-hexopyranoside starting from methyl 4,6-O-benzylidene-α-d-glucopyranoside is described.  相似文献   

4.
Aminoacyl derivatives of methyl α- and β-d-glucopyranosides have been synthesized in order to ascertain the structural features required for the perception of a sweet taste. 2,3-Di-O-(l-aminoacyl) derivatives of methyl α-d-glucopyranoside showed a strong sweet taste (16–35× sucrose), which decreased or disappeared when either one of the two l-aminoacyl groups was absent or substituted by a d-aminoacyl group. In the case of 2,3-di-O-(l-alanyl) derivatives of methyl d-glucopyranoside, the α-anomer was very sweet (16–25× suc.) whereas the β-anomer was not sweet. The structural prerequisite for sweetness in this group of compounds proved to be the presence of l-aminoacyl groups at C-2 and C-3, and the α-configuration at C-1. Its α-isopropyl anomer showed the highest sweetness (64× suc.), hence the increased lipophilicity is also an important criterion.  相似文献   

5.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

6.
Treatment of 2-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)ethanal (1a) and 2-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)ethanal (1b) respectively with malononitrile in the presence of silica gel provided the corresponding 4-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-cyanocrotononitriles (2a) and (2b). Starting from 2a and 2b, respectively, cyclizations with sulfur and triethylamine yielded 5-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-aminothiophene-3-carbonitriles (3a) and (3b). Further cyclizations could be achieved by utilizing of triethyl orthoformate/ammonia to furnish the 6-(α-D-glycopyranosyl)thieno[2,3-d]pyrimidine-4-amines 4a and 4b.  相似文献   

7.
The electroreductive conversion of saturated carbohydrates in aprotic media and the subsequent quenching with benzyl bromide results in the formation of benzyl ethers at different C-positions. The application of the semiempirical method AM1 for the calculation of the thermodynamic stability of the intermediate anions formed allows a correct prediction of the observed substitution pattern for the saturated monosaccharides methyl α-d-glucoside, methyl α-d-mannoside, methyl α-d-galactoside, and the unsaturated monosaccharide d-glucal. It is shown that the inclusion of solvent effects via the COSMO continuum model is essential, as it reduces the effect of intramolecular hydrogen bonding as the sole stabilization mode in the gas phase. The results for the disaccharide sucrose are somewhat ambiguous, the three observed substitution positions are among the four most stable calculated anions. This particular system appears to be too complex to be represented by a single conformation.  相似文献   

8.
Abstract

Methyl 6-deoxy-6-fluoro-β-d-galactopyranoside has been obtained by treatment of methyl β-d-galactopyranoside with diethyl-aminosulfur trifluoride (DAST). Improvements over the existing syntheses of methyl 2, 3-di-O-benzyl-4-deoxy-4-fluoro-β-d-galacto-pyranoside from the corresponding 6-O-substituted 4-O-arylsul-fonyl-d-gluco derivatives are described. 13C NMR spectra of a series of methyl deoxyfluoro-β-d-galactopyranosides and their per-O-acetyl derivatives have been measured. The data obtained can be used as an aid for the interpretation of 13C NMR spectra of deoxyfluoro-β-d-galactopyranose-containing oligosaccharides and related substances.  相似文献   

9.
Abstract

The primary structure of an elicitor-active oligosaccharide, LN-3, prepared from partially hydrolyzed algal laminaran was determined by means of the analyses of glycosyl-linkage, fragments by acetolysis, and glycosyl-sequence. The elicitor-active oligosaccharide, LN-3, is a pyridylaminated hepta-β-d-glucoside which was shown to have the following linear structure: β-d-Glcp(1→6)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→6)-β-d-Glcp(1→3)-Glc-PA.  相似文献   

10.
Abstract

The aminolysis of diethyl xylarate was found to proceed through intermediate lactones. In dimethyl sulfoxide at 30°C in the presence of etha-nolamine/ the 1,5-diester is rapidly converted into ethyl d, l-xylaro-1,4-lactone, which reacts with the primary amine to give ethyr N-(2-hydroxyech-yl)-d, l-xylaramide. This compound then forms N-(2-hydroxyethyl)-d, l-xylara-mide-2T5-lactone, which in turn reacts with ethanolamine to produce the final product, N,N'-bis-(2-hydroxyethyl)-d-l-xylaramide. This sequence of reactions was established by 13C NMR spectroscbpy.  相似文献   

11.
《合成通讯》2013,43(10):1707-1715
Abstract

A simple high-yielding procedure is described for the preparation of tri-O-acetyl-β-l-fucopyranosylformaldoxime (1) involving stannate(II)-mediated reduction of the readily accessible tri-O-acetyl-β-l-fucopyranosylnitromethane (3). The d-mannosyl, d-glucosyl, d-galactosyl, and d-xylosyl analogues 7–12 were prepared similarly. The structure of tetra-O-acetyl-β-d-mannopyranosylformaldoxime (7) was determined by X-ray crystallography.  相似文献   

12.
Abstract

The proton and carbon nuclear magnetic resonance spectroscopic data for methyl 4-O-α-d-glucopyranosyl-[6-O-a-u-glucopyranosyl]-β-d-glucopyranoside (1), a model for the branch-point trisacch-aride of amylopectin, have been analysed using 2-D-heteronuclear correlated spectroscopy. Similar data are presented for the related disaccharide structures methyl β-d-maltopyranoside and β-d-isomal topyranoside.  相似文献   

13.
Abstract

3, 6-Di-O-methyl-d-glucose was prepared via 5-O-allyl-1, 2-O-isopropylidene-3-O-methyl-αd-glucofuranose and was converted into 2, 4-di-O-acetyl-3, 6-di-o-methyl-dD-glucopyranosy 1 chloride. Condensation of the chlorosugar with methanol or allyl 2, 3-O-isopropylidene-α-l-rhamnopyranoside gave the corresponding crystalline β-glycbsides. The allyl 4-O-(2,4-di-O-acetyl-3, 6-di-O-Tnethyl-β-dD-glucopyranosyl)-2, 3-O-isopropylidene-α-l-rhamnopyranoside was converted into the title compounds and into crystalline 2, 3-di-O-acetyl-4-O-(2, 4-di-O-benzyl-3, 6-di-O-methyl-β-d-glucopyranosyl)-l-rhamnopyranosyl chloride which should serve as an intermediate for the synthesis of the trisaccharide portion of the major glycolipid of Mycobacterium leprae.  相似文献   

14.
Abstract

Perbenzyl derivatives of d-glucose, d-mannose, d-galactose, d-xylose, d-ribose and l-arabinose were prepared by treatment of reducing sugars with benzyl bromide in DMSO in the presence of potassium hydroxyde and the composition (α/β, Pyranoside/Furanoside) of the reaction mixtures determined by 13C-Nuclear Magnetic Resonance spectroscopy. Most of the per-O-benzyl glycosides were obtained in crystalline form unlike the corresponding methyl per-O-benzyl glycosides. Benzylation of d-mannose gave almost exclusively penta-O-benzyl-β-d-mannopyranoside (≥ 95%) as cristalline material. Benzylated reducing sugars were further obtained in good yield by acid hydrolysis of above compounds.  相似文献   

15.
Abstract

α-Stereocontrolled, glycoside synthesis of trimeric sialic acid is described toward a systematic approach to the synthesis of sialoglycoconjugates containing an α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid unit α-glycosidically linked to O-3 of a galactose residue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-d-galactopyranoside (4) or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (5), with methyl [phenyl 5-acetamido-8-O-[5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1”, 9′-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′, 9-lactone]-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α-glycosides 6 and 8, respectively. The glycosyl donor 3 was prepared from trimeric sialic acid by treatment with Amberlite IR-120 (H+) resin in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compounds 6 and 8 were converted into the per-O-acyl derivatives 7 and 9, respectively.  相似文献   

16.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

17.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

18.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

19.
Two new flavonol glycosides, brachysides C and D, together with three known flavonol glycosides, were isolated from the leaves of Caragana brachyantha. The structures of brachysides C and D were elucidated on the basis of detailed spectroscopic analysis as quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside] and quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside]-4′-O-[α-l-rhamnopyranoside], respectively. The presence of flavonol tetra- and triglycosides bearing a sugar moiety at position 5 was the first report from this genus Caragana.  相似文献   

20.
Two tetrameric arabinogalactans, β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-[α-L-arabinofuranosyl-(1→3)]-D-galactopyranose (14) and α-L-arabinofuranosyl-(1→3)-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-D-galactopyranose (25), which are good candidates for CCRC-M7 epitope characterization, were synthesized efficiently using a convergent strategy. Migration of an acceptor acetyl group proved to be an obstacle to synthesis, but regioselective glycosylation or 4-O-benzyl protection of the acceptor circumvented this problem allowing efficient synthesis of the 1→6 linked target compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号