首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

2.
Three types of carbazole containing 1,5-disubstituted poly(2,6-naphthalene) derivatives, i.e., 2,6-naphthalene homopolymer that has a carbazolyl side chain at 1,5-positions, random copolymers and alternating copolymers consisting of 1,5-dialkoxynaphthalene-2,6-diyl and N-phenylcarbazole-2,7-diyl were newly synthesized by Ni-mediated Yamamoto polycondensation and Pd-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of the polymers and their polydispersity indices (Mw/Mn) were 5.4-8.2 × 103 and 1.4-1.7, respectively. These polymers exhibited blue photoluminescence in the film states and high fluorescence quantum efficiencies in CHCl3 (?fl = 0.70-1.00). The electroluminescence properties of these polymers were investigated by fabricating a PLED device that has a configuration of ITO/PEDOT(PSS)/polymer/CsF/Al. The device fabricated with the random copolymer exhibited highest performances showing a maximum brightness of 8370 cd/m2 at 13 V and a maximum efficiency of 2.16 cd/A at 7 V.  相似文献   

3.
Two copolymers, P(PCEMA-co-MMA) and P(t-BMA-block-PCEMA), were prepared via ATRP using 2-(phenoxycarbonyloxy)ethyl methacrylate (PCEMA) as reactive monomer and methyl methacrylate (MMA) or tert-butyl methacrylate (t-BMA) as co-monomers. Alternatively phenoxycarbonyloxy decorated polymethacrylates were obtained via polymer analogous reaction: P(HEMA) was reacted with phenyl chloroformate to yield P(PCEMA). The highly reactive phenoxycarbonyloxy groups were used for polymer analogous reactions with nucleophiles to obtain polymers with ionic/hydrophilic and hydrophobic side groups. Different amines with long alkyl chains or tertiary amine groups were reacted with phenoxycarbonyloxy decorated polymers and subsequently reacted with methyl iodide to obtain amphipathic polymers with bacteriostatic properties.  相似文献   

4.
The homopolymer of 4‐chloromethylstyrene (P1) and its copolymers with styrene (in various mole ratios) were synthesized by bulk and solution free radical polymerizations, respectively, at 70 ± 1°C using α,α′‐azobis(isobutyronitrile) as an initiator. Lithiation of these soluble polymers in THF at −78°C was done and reacted with electrophiles such as tert‐BuMe2Si, Et3Si, and Me3SiCH2 in the presence of 4,4′‐di‐tert‐butylbiphenyl (DTBB) as a catalyst to produce modified polystyrene. In the other way, trimethylsilylmethyl lithium substitute as a nucleophile was covalently linked to the homopolymer and copolymer. The polymers were characterized by IR, 1H NMR, 13C NMR, differential scanning calorimetry (DSC), and gel permeation chromatography. DSC showed that incorporation of silyl substitute in the side chains of homopolymer and copolymers increases the rigidity of the polymers and, subsequently, their glass transition temperature. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:414–420, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20314  相似文献   

5.
Decenyl (D) and heptyl (H) oxazolines were copolymerized in o-dichlorobenzene solvent using methyl 4-nitrobenzenesulfonate as an initiator. A series of decenyl/heptyl oxazolines random copolymers (or DH copolymers) with a total degree of polymerization of 100 and narrow molecular weight distribution were obtained. These copolymers are considered as the poly(N-acylethylenimine)s with allyl pendant groups randomly attached to the far end of their polymethylene, (SINGLE BOND)(CH2)7(SINGLE BOND), side chains. The polymers were characterized by NMR, FT–IR. Both DSC and x-ray diffractometer demonstrated that the polymers are highly crystalline. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

7.
A variety of disubstituted (double-comb) polysiloxane polymers have been prepared containing linear, branched, and cyclic oligoethyleneoxide units, –(OCH2CH2)n–, in the side chains and as part of the siloxane backbone. Copolymers, using mixtures of linear ethylene oxide side chains, were also synthesized. These polymers were doped with LiN(SO2CF3)2 (LiTFSI, 1) and conductivities of the polymer-salt complexes were determined as a function of temperature and doping level. The maximum conductivity of these polymers at 25 ° C was 2.99 ×10–4, for a copolymer containing equimolar amounts of side chains with n = 5 and 6.  相似文献   

8.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Three soluble alternating conjugated copolymers, comprised of 9,9-dihexylfluorene and thiophene derivatives with/without oxadiazole side chains, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The structures of the polymers were confirmed with 1H NMR and 13C NMR, and the effect of oxadiazole side chains on the thermal, optical, electrochemical and photovoltaic properties were investigated. The introduction of rigid oxadiazole side chains could benefit to improve thermal stabilities of the conjugated polymers. Cyclic voltammograms revealed that the LUMO energy levels of P2 and P3 were reduced in comparison with P1 due to the introduction of electron-deficient oxadiazole side chains, indicating that electron-injection and transporting properties have been improved. Photovoltaic cells (PVCs) were fabricated based on the blend of the as-synthesized copolymers and the fullerene acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in a 1:1 weight ratio. The maximum power conversion efficiency (PCE = 1.49%) was obtained for P3 as the electron donor under the illumination of AM 1.5, 100 mW/cm2.  相似文献   

10.
The synthesis of styrenic monomers that have pyrazolic or bipyrazolic pendant groups is described. Their homopolymerization and their copolymerization with maleic anhydride (MA) and N-(3-acetoxy propyl) maleimide is reported. The monomers were prepared from the Williamson reaction between 2-pyridine carbinol, hydroxy monopyrazole, hydroxy bipyrazole, and chloromethyl styrene. The homopolymerizations of such styrenic monomers were tried under different conditions, which led to low molecular weight polymers with a high polydispersity. However, alternating copolymers were obtained using maleic anhydride or N-(3-acetoxy propyl) maleimide as comonomers, as shown by 1H-NMR, elemental analysis, and reactivity ratios r1 and r2. Furthermore, the hydrolysis of the acetate function of different copolymers was performed quantitatively. Unlike the acetoxy copolymers, such products do not have any glass transition temperature. Thermogravimetric investigations have shown that these copolymers exhibit good thermostability. © 1994 John Wiley & Sons, Inc.  相似文献   

11.

A new methacrylic monomer, 4‐nitro‐3‐methylphenyl methacrylate (NMPM) was prepared by reacting 4‐nitro‐3‐methyl phenol dissolved in methyl ethyl ketone (MEK) in the presence of triethylamine as a catalyst. Copolymerization of NMPM with methyl methacrylate (MMA) has been carried out in methyl ethyl ketone (MEK) by free radical solution polymerization at 70±1°C utilizing benzoyl peroxide (BPO) as initiator. Poly (NMPM‐co‐MMA) copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopy. The molecular weights (Mw and Mn) and polydispersity indices (Mw/Mn) of the polymers were determined using a gel permeation chromatograph. The glass transition temperatures (Tg) of the copolymers were determined by a differential scanning calorimeter, showing that Tg increases with MMA content in the copolymer. Thermogravimetric analysis of the polymers, performed under nitrogen, shows that the stability of the copolymer increases with an increase in NMPM content. The solubility of the polymers was tested in various polar and non‐polar solvents. Copolymer compositions were determined by 1H‐NMR spectroscopy by comparing the integral peak heights of well separated aromatic and aliphatic proton peaks. The monomer reactivity ratios were determined by the Fineman‐Ross (r1 =7.090:r2=0.854), Kelen‐Tudos (r1=7.693: r2=0.852) and extended Kelen‐Tudos methods (r1=7.550: r2= 0.856).  相似文献   

12.
We report the synthesis of poly(l ‐lactide) and poly(hexyl isocyanate) macromonomers using bischloro‐η5‐cyclopentadienyl(bicyclo[2.2.1]‐hept‐5‐en‐2‐oxy) Titanium (IV), [CpTiCl2(O‐NBE)]. These macromonomers bearing a norbornene end group were polymerized towards brush copolymers employing Grubbs' first generation catalyst. Brush copolymers consisting of blocks with different side chains were synthesized. The polymers were characterized by Size Exclusion Chromatography, Nuclear Magnetic Resonance, and their thermal properties were investigated by Thermogravimetric Analysis, and Differential Scanning Calorimetry analysis. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3455–3465  相似文献   

13.
New semiconducting copolymers, poly((TIPS‐ADT)‐(4,4′‐didodecyl‐2,2′‐bithiophene)) (PTADT2) and poly((TIPS‐ADT)‐(2,2′‐(4,4′‐didodecyl‐2,2′‐bithiophene)dithiophene)) (PTADT4) , produced by incorporating 5,11‐bis(triisopropylsilylethynyl) anthra[2,3‐b:7,6‐b']dithiophene (TIPS‐ADT) and alkyl‐thiophene derivatives were synthesized via Stille coupling polymerization. The optical, electrochemical, structural, field‐effect transistor, and solar cell properties of the polymers were investigated. The polymers showed good solubility at room temperature in common organic solvents due to their abundant side groups including TIPS and dodecyl side chains. Both polymers showed very broad UV absorption spectra covering the spectral range from 300 to 750 nm as a result of the combination of the different absorption ranges of the TIPS‐ADT unit (short wavelength region) and thiophene derivatives (long wavelength region). The FET device fabricated using PTADT4 containing additional unsubstituted thiophene rings as a spacer between TIPS‐ADT and thiophene derivatives showed a higher hole mobility (5.7 × 10?4 cm2/V s) than the PTADT2 device (2.8 × 10?5 cm2/V s), due to the improved intermolecular ordering caused by the reduced steric hindrance between bulky side chain groups. In addition, the PTADT4 :(6,6)‐phenyl‐C70‐butyric acid methyl ester (PC70BM) device showed an enhanced power conversion efficiency (PCE) of 1.30% compared with the PTADT2 :PC70BM device (PCE of 0.55%) under AM 1.5G irradiation (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two new coordination polymers formulated as {[Zn(bdic)(bmt)H2O]?·?0.5H2O} n (1) and {[Cd(bdic)(bmt)(H2O)2]?·?2H2O} n (2) (H2bdic?=?1,3-benzenedicarboxylic acid, bmt?=?1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole) have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. Both coordination polymers exhibit 1-D chain structure where bmt is unidentate and bdic2? bridging. In 1, bmt hangs at two sides of the main chain, whereas bmt hangs at one side of the main chain in 2. Fluorescent properties have also been determined.  相似文献   

15.
A series of novel polyfluorene copolymers are developed by covalently attaching narrow band gap aryl-heterocycle units of Th-BT-TPA to the side chain of polyfluorene with an alkyl phenyl spacer through Pd-catalyzed Suzuki coupling reactions. The resulting copolymers are soluble in common organic solvents. The electrochemical, optical, and photovoltaic properties of the copolymers are studied. Electrochemical and optical analysis reveal that these polymers exhibit relatively low band gaps from 1.95 to 2.00 eV and exhibit strong absorption in the 300-620 nm region. BHJ solar cells blending copolymers PF-MR15-DBT35 with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) (1:1 weight ratio) as the active layer present a high open-circuit voltage (Voc∼1.0 V) and a power conversion efficiency of 0.7% under simulated solar light AM1.5G (80 mW/cm2). Further investigations of other polyfluorene copolymers with narrow band gap aryl-heterocycle units on the side chain are in progress.  相似文献   

16.
Two 1-D coordination polymers have been synthesized and identified as [Zn(ox)(en)] n (H2O)2 n (1) and [Cu2(dmeo)(N3)2] n (2), where en represents diaminoethane, ox and dmeo stand for dianions of oxalic acid and N,N′-bis[2-(dimethylamino)ethyl]oxamide, respectively. Polymer 1 was characterized by elemental analysis, molar conductance measurement, IR and electronic spectra, and single-crystal X-ray diffraction. Polymer 1 consists of 1-D chains bridged by oxalate. The ZnII can be described as a distorted octahedral environment and the ZnII···ZnII separation through the μ-oxalato-bridge is 5.5420(9)?Å. Hydrogen bonds assemble the coordination polymers to a 3-D supermolecular structure. The crystal structure of 2 has been reported previously. However, the bioactivities were not studied. The DNA-binding properties and cytotoxic activities of the two coordination polymers are investigated. The results suggest that the two polymers interact with HS-DNA in groove binding with binding affinity following the order of 1?>?2, which is consistent with their anticancer activities.  相似文献   

17.
Amorphous isotactic poly(4-methyl-1-pentene) was synthesized from 4-methyl-1-pentene in the presence of the zirconium complex (η5-C5Me5)ZrMe[PhCH2NC(Me)N-tert-Bu][B(C6H5)4] as a catalyst of living polymerization and characterized. A number of linear isotactic copolymers of 4-methyl-1-pentene with 1-hexene and functionalized olefins, such as 5-(trialkylsiloxy)-1-pentene, were prepared under similar conditions. The feasibility of chemical modification of the functionalized copolymers to yield hydroxylated copolymers was studied. All the polymers obtained were characterized by means of the GPC, DSC, X-ray diffraction, and 13C and 1H NMR techniques.  相似文献   

18.
We report the synthesis of low bandgap polymers with a difluoroquinoxaline unit by Stille polymerization for use in polymer solar cells (PSCs). A new series of copolymers with 2,3‐didodecyl‐6,7‐difluoro quinoxaline as the electron‐deficient unit and alkyloxybenzo[1,2‐b:4,5‐b′]dithiophene and thiophene as the electron‐rich unit were synthesized. The photovoltaic properties of the devices based on the synthesized polymers revealed that the fluorine atoms at the quinoxaline units aid in decreasing the highest occupied molecular orbital (HOMO) energy levels; this in turn increased the open circuit voltage of the devices. The polymers with long alkyl chains exhibited good solubility that increased their molecular weight, but the power conversion efficiency was low. Efficient polymer solar cells were fabricated by blending the synthesized copolymers with PC71BM, and the PCE increased up to 5.11% under 100 mW cm−2 AM 1.5 illumination. These results demonstrate that the importance of having a control polymer to be synthesized and characterized side by side with the fluorine analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1489–1497  相似文献   

19.
Imprinted polymers were synthesized using the surface‐grafting technique with [Co(III) 1 (vpy)(dmap)]PF6 { 1 , bis[2‐hydroxy‐4‐(4‐vinylbenzyloxy)benzaldehyde]ethylene‐diimine; vpy: 4‐vinylpyridine; dmap: N,N′‐dimethyl‐4‐aminopyridine} as the template. The metallated sites were probed using spectroscopic techniques including UV–vis, Fourier transform infrared, and electron paramagnetic resonance (EPR) spectroscopies to investigate the site architecture and isolation of the immobilized sites in the surface‐grafted polymers. EPR studies showed a distribution of four and five coordinated sites similar to the bulk copolymers, and the surface‐grafted polymer showed reversible binding to dioxygen in multiple cycles. Both results indicated site isolation in the surface‐grafted polymers analogous to the bulk polymers. Although the dioxygen binding in surface‐grafted polymers is reversible, the spin density decreases to 50% in the third cycle as opposed to bulk copolymers. This indicates that the sites are more heterogeneous and more exposed to the environment than the analogous sites in bulk copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 888–897, 2001  相似文献   

20.
The new acrylic monomer 4‐propanoylphenyl acrylate (PPA) was synthesized and copolymerized with methyl methacrylate (MMA) in methyl ethyl ketone at 70±1°C using benzoyl peroxide as a free radical initiator. The copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopic techniques. The compositions of the copolymers were determined by 1H‐NMR analysis. The reactivity ratios of the monomers were determined using Fineman‐Ross (r1=0.5535 and r2=1.5428), Kelen‐Tüdös (r1=0.5307 and r2=1.4482), and Ext. Kelen‐Tüdös (r1=0.5044 and r2=1.4614), as well as by a nonlinear error‐in‐variables model (EVM) method using a computer program, RREVM (r1=0.5314 and r2=1.4530). The solubility of the polymers was tested in various polar and non‐polar solvents. The elemental analysis was determined by a Perkin‐Elmer C‐H analyzer. The molecular weights (Mw and Mn) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of MMA in the copolymers. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of MMA in the copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号