首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bayesian Networks (BNs) are probabilistic inference engines that support reasoning under uncertainty. This article presents a methodology for building an information technology (IT) implementation BN from client–server survey data. The article also demonstrates how to use the BN to predict the attainment of IT benefits, given specific implementation characteristics (e.g., application complexity) and activities (e.g., reengineering). The BN is an outcome of a machine learning process that finds the network’s structure and its associated parameters, which best fit the data. The article will be of interest to academicians who want to learn more about building BNs from real data and practitioners who are interested in IT implementation models that make probabilistic statements about certain implementation decisions.  相似文献   

2.
The time-evolving precision matrix of a piecewise-constant Gaussian graphical model encodes the dynamic conditional dependency structure of a multivariate time-series. Traditionally, graphical models are estimated under the assumption that data are drawn identically from a generating distribution. Introducing sparsity and sparse-difference inducing priors, we relax these assumptions and propose a novel regularized M-estimator to jointly estimate both the graph and changepoint structure. The resulting estimator possesses the ability to therefore favor sparse dependency structures and/or smoothly evolving graph structures, as required. Moreover, our approach extends current methods to allow estimation of changepoints that are grouped across multiple dependencies in a system. An efficient algorithm for estimating structure is proposed. We study the empirical recovery properties in a synthetic setting. The qualitative effect of grouped changepoint estimation is then demonstrated by applying the method on a genetic time-course dataset. Supplementary material for this article is available online.  相似文献   

3.
A major difficulty in building Bayesian network (BN) models is the size of conditional probability tables, which grow exponentially in the number of parents. One way of dealing with this problem is through parametric conditional probability distributions that usually require only a number of parameters that is linear in the number of parents. In this paper, we introduce a new class of parametric models, the Probabilistic Independence of Causal Influences (PICI) models, that aim at lowering the number of parameters required to specify local probability distributions, but are still capable of efficiently modeling a variety of interactions. A subset of PICI models is decomposable and this leads to significantly faster inference as compared to models that cannot be decomposed. We present an application of the proposed method to learning dynamic BNs for modeling a woman's menstrual cycle. We show that PICI models are especially useful for parameter learning from small data sets and lead to higher parameter accuracy than when learning CPTs.  相似文献   

4.
We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parameterization of the model. Supplementary materials for this article are available online.  相似文献   

5.
In multivariate categorical data, models based on conditional independence assumptions, such as latent class models, offer efficient estimation of complex dependencies. However, Bayesian versions of latent structure models for categorical data typically do not appropriately handle impossible combinations of variables, also known as structural zeros. Allowing nonzero probability for impossible combinations results in inaccurate estimates of joint and conditional probabilities, even for feasible combinations. We present an approach for estimating posterior distributions in Bayesian latent structure models with potentially many structural zeros. The basic idea is to treat the observed data as a truncated sample from an augmented dataset, thereby allowing us to exploit the conditional independence assumptions for computational expediency. As part of the approach, we develop an algorithm for collapsing a large set of structural zero combinations into a much smaller set of disjoint marginal conditions, which speeds up computation. We apply the approach to sample from a semiparametric version of the latent class model with structural zeros in the context of a key issue faced by national statistical agencies seeking to disseminate confidential data to the public: estimating the number of records in a sample that are unique in the population on a set of publicly available categorical variables. The latent class model offers remarkably accurate estimates of population uniqueness, even in the presence of a large number of structural zeros.  相似文献   

6.
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, such as Bayesian Networks. Furthermore, inference can be carried out efficiently over a PDG, in time linear in the size of the model. The problem of learning PDGs from data has been studied in the literature, but only for the case of complete data. We propose an algorithm for learning PDGs in the presence of missing data. The proposed method is based on the Expectation-Maximisation principle for estimating the structure of the model as well as the parameters. We test our proposal on both artificially generated data with different rates of missing cells and real incomplete data. We also compare the PDG models learnt by our approach to the commonly used Bayesian Network (BN) model. The results indicate that the PDG model is less sensitive to the rate of missing data than BN model. Also, though the BN models usually attain higher likelihood, the PDGs are close to them also in size, which makes the learnt PDGs preferable for probabilistic inference purposes.  相似文献   

7.
When there are several experts in a specific domain, each may believe in a different Bayesian network (BN) representation of the domain. In order to avoid having to work with several BNs, it is desirable to aggregate them into a single BN. One way of finding the aggregated BN is to start by finding the structure, and then find the parameters. In this paper, we focus on the second step, assuming that the structure has been found by some previous method.DemocraticOP is a new way of combining experts’ parameters in a model. The logic behind this approach is borrowed from the concept of democracy in the real world. We assume that there is a ground truth and that each expert represents a deviation from it - the goal is to try to find the ground truth based on the experts’ opinions. If the experts do not agree, then taking a simple average of their opinions (as occurs in classical aggregation functions such as LinOP and LogOP) is flawed. Instead, we believe it is better to identify similar opinions through clustering, and then apply averaging, or any other aggregation function, over the cluster with the highest number of members to obtain the aggregated parameters that are closest to the ground truth. In other words, respect the majority as is done in democratic societies instead of averaging over all experts’ parameters. The new approach is implemented and tested over several BNs with different numbers of variables and parameters, and with different numbers of experts. The results show that DemocraticOP outperforms two commonly used methods, LinOP and LogOP, in three key metrics: the average of absolute value of the difference between the true probability distribution and the one corresponding to the aggregated parameters, Kullback-Leibler divergence, and running time.  相似文献   

8.
One of the hardest challenges in building a realistic Bayesian Network (BN) model is to construct the node probability tables (NPTs). Even with a fixed predefined model structure and very large amounts of relevant data, machine learning methods do not consistently achieve great accuracy compared to the ground truth when learning the NPT entries (parameters). Hence, it is widely believed that incorporating expert judgments can improve the learning process. We present a multinomial parameter learning method, which can easily incorporate both expert judgments and data during the parameter learning process. This method uses an auxiliary BN model to learn the parameters of a given BN. The auxiliary BN contains continuous variables and the parameter estimation amounts to updating these variables using an iterative discretization technique. The expert judgments are provided in the form of constraints on parameters divided into two categories: linear inequality constraints and approximate equality constraints. The method is evaluated with experiments based on a number of well-known sample BN models (such as Asia, Alarm and Hailfinder) as well as a real-world software defects prediction BN model. Empirically, the new method achieves much greater learning accuracy (compared to both state-of-the-art machine learning techniques and directly competing methods) with much less data. For example, in the software defects BN for a sample size of 20 (which would be considered difficult to collect in practice) when a small number of real expert constraints are provided, our method achieves a level of accuracy in parameter estimation that can only be matched by other methods with much larger sample sizes (320 samples required for the standard machine learning method, and 105 for the directly competing method with constraints).  相似文献   

9.
We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modeled using a decomposable graphical model. We propose an efficient Markov chain Monte Carlo algorithm relying on a parameter expansion scheme to sample from the resulting posterior distribution. This algorithm updates the correlation matrix within a simple Gibbs sampling framework and allows us to infer the correlation structure from the data, generalizing methods used for inference in decomposable Gaussian graphical models to multivariate binary observations. We demonstrate the performance of this model and of the Markov chain Monte Carlo algorithm on simulated and real datasets. This article has online supplementary materials.  相似文献   

10.
Bayesian networks (BNs) are a useful tool for applications where dynamic decision-making is involved. However, it is not easy to learn the structure and conditional probability tables of BNs from small datasets. There are many algorithms and heuristics for learning BNs from sparse datasets, but most of these are not concerned with the quality of the learned network in the context of a specific application. In this research, we develop a new heuristic on how to build BNs from sparse datasets in the context of its performance in a real-time recommendation system. This new heuristic is demonstrated using a market basket dataset and a real-time recommendation model where all items in the grocery store are RFID tagged and the carts are equipped with an RFID scanner. With this recommendation model, retailers are able to do real-time recommendations to customers based on the products placed in cart during a shopping event.  相似文献   

11.
The marginal likelihood of the data computed using Bayesian score metrics is at the core of score+search methods when learning Bayesian networks from data. However, common formulations of those Bayesian score metrics rely on free parameters which are hard to assess. Recent theoretical and experimental works have also shown that the commonly employed BDe score metric is strongly biased by the particular assignments of its free parameter known as the equivalent sample size. This sensitivity means that poor choices of this parameter lead to inferred BN models whose structure and parameters do not properly represent the distribution generating the data even for large sample sizes. In this paper we argue that the problem is that the BDe metric is based on assumptions about the BN model parameters distribution assumed to generate the data which are too strict and do not hold in real settings. To overcome this issue we introduce here an approach that tries to marginalize the meta-parameter locally, aiming to embrace a wider set of assumptions about these parameters. It is shown experimentally that this approach offers a robust performance, as good as that of the standard BDe metric with an optimum selection of its free parameter and, in consequence, this method prevents the choice of wrong settings for this widely applied Bayesian score metric.  相似文献   

12.
The conditional independence structure of a common probability measure is a structural model. In this paper, we solve an open problem posed by Studeny [Probabilistic Conditional Independence Structures, Theme 9, p. 206]. A new approach is proposed to decompose a directed acyclic graph and its optimal properties are studied. We interpret this approach from the perspective of the decomposition of the corresponding conditional independence model and provide an algorithm for identifying the maximal prime subgraphs in a directed acyclic graph.  相似文献   

13.
The theory of Gaussian graphical models is a powerful tool for independence analysis between continuous variables. In this framework, various methods have been conceived to infer independence relations from data samples. However, most of them result in stepwise, deterministic, descent algorithms that are inadequate for solving this issue. More recent developments have focused on stochastic procedures, yet they all base their research on strong a priori knowledge and are unable to perform model selection among the set of all possible models. Moreover, convergence of the corresponding algorithms is slow, precluding applications on a large scale. In this paper, we propose a novel Bayesian strategy to deal with structure learning. Relating graphs to their supports, we convert the problem of model selection into that of parameter estimation. Use of non-informative priors and asymptotic results yield a posterior probability for independence graph supports in closed form. Gibbs sampling is then applied to approximate the full joint posterior density. We finally give three examples of structure learning, one from synthetic data, and the two others from real data.  相似文献   

14.
15.
利用基因表达数据提出一种新的网络模型—贝叶斯网络,发现基因的互作.一个贝叶斯网络是多变量联合概率分布的有向图模型,表示变量间的条件独立属性.首先我们阐明贝叶斯网络如何表示基因间的互作,然后介绍从基因芯片数据学习贝叶斯网络的方法.  相似文献   

16.
Probabilistic compositional models, similarly to graphical Markov models, are able to represent multidimensional probability distributions using factorization and closely related concept of conditional independence. Compositional models represent an algebraic alternative to the graphical models. The system of related conditional independencies is not encoded explicitly (e.g. using a graph) but it is hidden in a model structure itself. This paper provides answers to the question how to recognize whether two different compositional model structures are equivalent – i.e., whether they induce the same system of conditional independencies. Above that, it provides an easy way to convert one structure into an equivalent one in terms of some elementary operations on structures, closely related ability to generate all structures equivalent with a given one, and a unique representative of a class of equivalent structures.  相似文献   

17.
Bayesian networks (BNs) are widely used graphical models usable to draw statistical inference about directed acyclic graphs. We presented here Graph_sampler a fast free C language software for structural inference on BNs. Graph_sampler uses a fully Bayesian approach in which the marginal likelihood of the data and prior information about the network structure are considered. This new software can handle both the continuous as well as discrete data and based on the data type two different models are formulated. The software also provides a wide variety of structure prior which can depict either the global or local properties of the graph structure. Now based on the type of structure prior selected, we considered a wide range of possible values for the prior making it either informative or uninformative. We proposed a new and much faster jumping kernel strategy in the Metropolis–Hastings algorithm. The source C code distributed is very compact, fast, uses low memory and disk storage. We performed out several analyses based on different simulated data sets and synthetic as well as real networks to discuss the performance of Graph_sampler.  相似文献   

18.
In this paper we answer to the comments provided by Fabio Cozman, Marco Zaffalon, Giorgio Corani, and Didier Dubois on our paper ‘Imprecise Probability Models for Learning Multinomial Distributions from Data. Applications to Learning Credal Networks’. The main topics we have considered are: regularity, the learning principle, the trade-off between prior imprecision and learning, strong symmetry, and the properties of ISSDM for learning graphical conditional independence models.  相似文献   

19.
This paper introduces a new probabilistic graphical model called gated Bayesian network (GBN). This model evolved from the need to represent processes that include several distinct phases. In essence, a GBN is a model that combines several Bayesian networks (BNs) in such a manner that they may be active or inactive during queries to the model. We use objects called gates to combine BNs, and to activate and deactivate them when predefined logical statements are satisfied. In this paper we also present an algorithm for semi-automatic learning of GBNs. We use the algorithm to learn GBNs that output buy and sell decisions for use in algorithmic trading systems. We show how the learnt GBNs can substantially lower risk towards invested capital, while they at the same time generate similar or better rewards, compared to the benchmark investment strategy buy-and-hold. We also explore some differences and similarities between GBNs and other related formalisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号