首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过引入聚乙烯亚胺(PEI)链与对叠氮苯甲酸(ABA)分子对薄层芳香聚酰胺复合反渗透膜(TFC)进行接枝改性, 采用傅里叶衰减全反射红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)分析了反渗透膜活性分离层的化学组成和结构, 用静态水接触角仪与Zeta电位仪测试了反渗透膜表面的亲疏水性和电荷性质, 并利用扫描电子显微镜(SEM)及原子力显微镜(AFM)观察其表面形貌, 测试了反渗透膜在苦咸水与海水条件下的分离性能. 实验结果表明, 使用PEI与ABA对反渗透膜改性后, 提升了其分离层的致密度, 使硼渗透通过反渗透膜时的传质阻力变大, 从而将改性反渗透膜(TFC-PEI-ABA)对硼的截留率提升至90.45%, 达到了世界卫生组织对水质的要求.  相似文献   

2.
Highly fouling-resistant ultrafiltration (UF) membranes were synthesized by heterogeneous photograft copolymerization of two water-soluble monomers, poly(ethylene glycol) methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPE), with and without cross-linker monomer N,N'-methylene bisacrylamide (MBAA), onto a polyethersulfone (PES) UF membrane. The characteristics, the stability, and the UF separation performance of the resulting composite membranes were evaluated in detail. The membranes were characterized with respect to membrane chemistry (by ATR-IR spectroscopy and elemental analysis), surface wettability (by contact angle), surface charge (by zeta potential), surface morphology (by scanning electron microscopy), and pure water permeability and rejection of macromolecular test substances (including the "cutoff" value). The surface chemistry and wettability of the composite membranes did not change after incubating in sodium hypochlorite solution (typically used for cleaning UF membranes) for a period of 8 days. Changes in water permeability after static contact with solutions of a model protein (myoglobin) were used as a measure of fouling resistance, and the results suggest that PEGMA- and SPE-based composite membranes at a sufficient degree of graft modification showed much higher adsorptive fouling resistance than unmodified PES membranes of similar or larger nominal cutoff. This was confirmed in UF experiments with myoglobin solutions. Similar results, namely, a very much improved fouling resistance due to the grafted thin polymer hydrogel layer, were also obtained in the UF evaluation using humic acid as another strong foulant. In some cases, the addition of the cross-linker during modification could improve both permeate flux and solute rejection during UF. Overall, composite membranes prepared with an "old generation" nonfouling material, PEGMA, showed better performance than composite membranes prepared with a "new generation" one, the zwitterionic SPE.  相似文献   

3.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

4.
利用静电纺丝技术在无纺布上制备PET纳米纤维膜, 并用交联壳聚糖对其进行改性得到壳聚糖改性纳米纤维复合膜. 以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体, 采用界面聚合法在壳聚糖改性纳米纤维复合膜的表面制备聚酰胺分离层, 得到新型静电纺丝纳米纤维基复合反渗透膜. 新型复合反渗透膜具有典型的聚酰胺复合反渗透膜的表面脊-谷结构. 从膜的表面形貌、 亲水性、 分离性能等3个方面对水相MPD溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的含量对膜结构和性能的影响进行了系统研究. 结果表明, SDBS的含量对膜形态结构的均匀性和亲水性有一定影响, 且随着SDBS含量的增加, 膜的脱盐率先增大后减小, 而通量小幅度上升后, 先减小后增大, 呈现规律性变化.  相似文献   

5.
The world is constantly challenged regarding managing environmental and ecological contamination due to human and industrial activities. This is because of the constant threat posed by pollution. Nowadays, membrane-based technology is a growing field, making practically all the separation of foulant from wastewater possible. The membrane fouling resulting from the interaction between the foulant and the membrane surface presents a challenge for the technology in maintaining performance over extended periods of operation. As a result, there is a rising interest in research focusing mainly on creating patterned membrane surfaces that reduce fouling and effectively enhance the surface area. This article comprehensively overviews the most recent and cutting-edge techniques that can be applied to modify and construct high-performance patterned membranes suitable for ultrafiltration, microfiltration, nanofiltration, and reverse osmosis (UF, MF, NF, and RO) water purification processes. In this study, recent developments in membrane material are dissected, focusing on methods for improving surface chemistry, structure, and hydrodynamics, as well as the consequences of these characteristics on filtering performance.  相似文献   

6.
The aim of this article is to review the recent progress in the coupling of membrane separation and electrochemical technologies for water treatment. Process integration strategies have been classified in three groups. The first group deals with electrocoagulation and electrooxidation as pretreatment of membrane separation, in most cases aimed at reducing membrane fouling and decay of permeate flux of porous ultrafiltration membranes. The second group is dedicated to electrooxidation as remediation treatment for nanofiltration and reverse osmosis concentrates, which accumulate priority pollutants and emerging contaminants. Finally, the article evaluates the optimal integration of technologies using process systems engineering tools, for producing a single purified water stream, considering not only the minimization of the energy consumption but also of the total costs. Overall, it is concluded that the preconcentration strategy provides a remarkable enhancement of electrooxidation performance to degrade persistent pollutants.  相似文献   

7.
Polyurethane (ether type) and sulfonated polysulfone (sodium salt form) in the presence of polyethylene glycol 600 were blended in various compositions using N,N'-dimethylformamide as solvent and used for preparing ultrafiltration membranes by the phase inversion technique. Polymer blend composition, additive concentration, and casting and gelation conditions were optimized. Blend membranes were subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane resistance. The membranes were also subjected to the determination of pore statistics and molecular weight cutoff determination studies using dextran of different molecular weights. Surface morphology of the membranes was analyzed using scanning electron microscopy at different magnifications. The effects of polymer composition and additive concentration on the above parameters were analyzed and the results are compared and discussed with those of pure sulfonated polysulfone membranes. The derived pore size, porosity, and number of pores have a remarkable interrelationship and also have a definite role and relationship with the molecular weight cutoff, morphology, and flux performance of the membranes.  相似文献   

8.
Laboratory-scale colloidal fouling tests, comparing the fouling behavior of cellulose acetate and aromatic polyamide thin-film composite reverse osmosis (RO) membranes, are reported. Fouling of both membranes was studied at identical initial permeation rates so that the effect of the transverse hydrodynamic force (permeation drag) on the fouling of both membranes is comparable. Results showed a significantly higher fouling rate for the thin-film composite membranes compared to that for the cellulose acetate membranes. Addition of an anionic surfactant (sodium dodecyl sulfate, SDS) to mask variations in chemical and electrokinetic surface characteristics of the cellulose acetate and aromatic polyamide membranes resulted in only a small change in the fouling behavior. The higher fouling rate for the thin-film composite membranes is attributed to surface roughness which is inherent in interfacially polymerized aromatic polyamide composite membranes. AFM and SEM images of the two membrane surfaces strongly support this conclusion. These surface images reveal that the thin-film composite membrane exhibits large-scale surface roughness of ridge-and-valley structure, while the cellulose acetate membrane surface is relatively smooth.  相似文献   

9.
Blend hydrophilic polyamide imide (PAI)-sulfonated poly (ether ether keton) (SPEEK) hollow fiber membranes were fabricated for oil-water emulsion separation. The structure and performance of the membranes were examined by FESEM analysis, N2 permeation, overall porosity, collapsing pressure, water contact angle, pure water flux, molecular weight cutoff (MWCO), and oil rejection tests. By studying ternary phase diagrams of polymer/solvent-additive/water system, the higher phase-inversion rate was confirmed for the solutions prepared at higher PAI/SPEEK ratio. A more open structure with larger finger-likes was observed by increasing PAI/SPEEK ratio. Mean pore size of 81 nm, overall porosity of 79% and water contact angle of 58° were obtained for the improved membrane prepared by PAI/SPEEK ratio of 85/15. Increasing SPEEK ratio resulted in lower mechanical stability in terms of collapsing pressure. Pure water flux of about 2.5 times of the plain PAI membrane was found for the improved membrane. MWCO of 460 kDa was found for the improved blend membrane. From oil rejection test, all the membranes demonstrated an oil rejection of over 95%. The improved membrane showed a lower rate of permeate flux reduction compared to the plain membrane which was related to the smaller fouling possibility. Less fouling resistance of the improved membrane was related to the higher flux recovery ratio (about 92%). For all the membranes, the dominant fouling mechanism was found to be the cake filtration. The improved PAI-SPEEK hollow fiber membranes was found to be practical for ultrafiltration of oily wastewaters.  相似文献   

10.
高分子纳滤膜的制备技术   总被引:3,自引:0,他引:3  
纳滤膜是介入于反渗透膜和超滤膜之间的一种压力驱动的新型分离膜,已成为近年来研究的热点,由于其载留分子量范围相对较窄(200-1000)且孔径处于纳米级(10^-9m),因此膜材质的选择及制备技术成为制备出高性能纳滤膜的关键。本文介绍了高分子纳滤膜的几种主要的制备工艺,并概述了近年来国内外在高分子纳滤膜材质、制备方法以及所制膜性能及应用方面的研究进展。  相似文献   

11.
Application of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

12.
Many of the commercial membrane separation processes we have today would not have been possible without the development of high-flux, effectively extremely thin membranes. The first such development was the Loeb-Sourirajan, “skinned” cellulose acetate membrane, now used in reverse osmosis desalination, ultrafiltration, and gas separations. Other methods for making imperfection-free membranes followed, culminating in the current state-of-the-art: the thin-film composite membrane made by interracial polymerization techniques. Each of these membranes has an effective thickness less than about 1μm. In this short historical review, the evolution of several methods used to make very thin synthetic membranes is traced, along with brief citations of their current applications.  相似文献   

13.
Polysulfone (PSF) membranes have gained great attention in the fields of ultrafiltration,microfiltration,and thin film composite membranes for nanofiltration or reverse osmosis.For the first time,it is proposed to fabricate PSF membranes via thermally induced phase separation (TIPS) process using diphenyl sulfone (DPSO2) and polyethylene glycol (PEG) as mixed diluent.DPSO2 is chosen as a crystallizable diluent,while PEG is considered in terms of molecular weight (Mw) and dosage.We systematically investigate the interactions between PSF,DPSO2 and PEG based on the simulation calculations and solubility parameter theory.It is inferred that DPSO2 has an excellent compatibility with PSF,and the addition of PEG results in the ternary system thermodynamically less stable and then facilitates its liquid-liquid (L-L) phase separation.SEM images indicate that cellular-like pores are obvious throughout the membrane when the PEG content in the mixed diluent is 25 wt%-35 wt%.We can facilely manipulate the pore size,water flux and mechanical properties of PSF membranes with the dosage of PEG-200,the Mw of PEG or the cooling rate.The successful application of TIPS can provide a new approach for structure manipulation and performance enhancement of PSF membranes.  相似文献   

14.
本文概述了7种以高分子为膜材料、用于混合液体分离的膜分离过程,即离子交换膜与电渗析、反渗透、超滤、微孔过滤、膜萃取、渗透汽化和膜蒸馏。对其原理、高分子膜材料、应用和发展趋向作了简要介绍;并阐述了我国膜分离发展的现状和展望。  相似文献   

15.
Recently, inorganic nanoparticles blended within polymeric membranes have shown improved antifouling performance in wastewater treatment. However, agglomeration of nanoparticles remains as one of the major obstacles for generating a uniform surface. In this study, a new method for in situ preparation of Al-containing PVDF ultrafiltration membranes to improve the dispersion of nanoparticles is reported. The strategy of this method is to combine sol-gel process with traditional immersion precipitation process. Al sol was synthesized by the addition of anionic exchange resin in N,N-dimethylformamide (DMF) solvent containing aluminum chloride. Homogeneous Al-containing PVDF casting solution was then obtained by dissolving PVDF polymer in the Al sol. The membrane formation mechanism was investigated by precipitation kinetics and morphology. Results indicate that the addition of Al species can accelerate phase inversion of casting solution. Scanning electron microscopic images show that a typical transition from sponge-like structure to finger-like structure occurred with increasing Al species content. The existence and dispersion states of Al species in the resultant membrane matrix were further examined by transmission electron microscope and X-ray photoelectron spectrometer. The results indicate the Al species nanoparticles were well dispersed throughout PVDF matrix. Dynamic BSA fouling resistance experiments demonstrate the Al-containing PVDF membranes possess improved separation performances over the pure PVDF membranes.  相似文献   

16.
Membrane technology is the dominant process in water treatment. However, the operation cost of membranes cannot be decreased unless the amount of fouling, the “Achilles heel” of membranes, and energy consumed are cut. The high energy requirements in commercial nanofiltration, reverse osmosis and forward osmosis technologies lead researchers to develop new membrane designs having high flux values with high salt rejection values. The purpose of this review is to present the inadequacies of the membrane processes by considering studies related to fouling and energy minimization. In this respect, lipid bilayers, block copolymers, aquaporin Z proteins and aligned carbon nanotubes can be the base to build biomimetic membranes. Such studies are summarized due to their remarkable properties in fouling control. Furthermore, the review describes the membrane design strategies and points the limitations hindering commercialization. Additionally, it is hoped that this review will trigger further needed studies.  相似文献   

17.
This paper aims to study the structure–property relationship and make several reasonable suggestions for tailoring special separation performance and surface properties of thin-film composite polyamide membranes. In the experiments, composite membranes of different thin films with small structural differences were prepared through interfacial polymerization of trimesoyl chloride (TMC), 5-isocyanato-isophthaloyl chloride (ICIC), and 5-chloroformyloxy-isophthaloyl chloride (CFIC) with m-phenylenediamine (MPD) separately, after which their reverse osmosis performances were evaluated by permeation experiment with salt aqueous solution, and film properties were characterized by AFM, SEM, XPS, ATR-IR, contact angle and streaming potential measurements. Chlorine stability was also studied through the evaluation of membrane performance before and after hypochlorite exposure. The results show that the polyacyl chloride structure strongly influences the reverse osmosis performance, surface properties and chlorine stability of the composite membranes; that the introduction of isocyanato group into polyacyl chloride improves the hydrophilicity, water permeability and surface smoothness of the thin-film composite membrane, and increases the absolute value of zeta potential at both low and high pH, but reduces the chlorine stability; and that the introduction of chloroformyloxy group increases the salt rejection rate and the surface roughness of the composite membrane, but lowers the water permeability.  相似文献   

18.
The relation between biofouling and membrane flux in spiral wound nanofiltration and reverse osmosis membranes in drinking water stations with extensive pretreatment such as ultrafiltration has been studied. The flux – water volume flowing through the membrane per unit area and time – is not influencing the development of membrane biofouling. Irrespective whether a flux was applied or not, the feed spacer channel pressure drop and biofilm concentration increased in reverse osmosis and nanofiltration membranes in a monitor, test rigs, a pilot scale and a full-scale installation. Identical behavior with respect to biofouling and feed channel pressure drop development was observed in membrane elements in the same position in a nanofiltration installation operated with and without flux. Calculation of the ratio of diffusive and convective flux showed that the diffusive flux is considerably larger than the convective flux, supporting the observations that the convective flux due to permeate production is playing an insignificant role in biofouling. Since fouling occurred irrespective of the actual flux, the critical flux concept stating that “below a critical flux no fouling occurs” is not a suitable approach to control biofouling of spiral wound reverse osmosis and nanofiltration membranes.  相似文献   

19.
Since many years synthetic membranes have been used in reverse osmosis or ultrafiltration for the separation of aqueous mixtures. More recently the separation of gases and vapors by selective membrane permeation has gained significant technical and commercial interest. The recovery of hydrogen from petrochemical purge gases and ammonia production processes or the removal of CO2 from natural gas by selective membrane permeation are today state of the art procedures. The recovery of organic solvents from waste air streams is another very promising application of synthetic membranes. In this paper the main parameters determining the performance of a membrane in gas and vapor separation are described. The requested intrinsic properties of the polymer to be useful as a barrier for a selective gas and vapor transport are discussed. The preparation of appropriate membranes is described. Their performance in practicle applications is illustrated in selected examples.  相似文献   

20.
Surface modification using grafting of a hydrophilic polymer onto the membrane surface is a possible route to improving the fouling properties of polyamide thin-film composite membranes. The structure of nanofiltration (NF) and reverse osmosis (RO) membranes modified using graft polymerization of acrylic (AA) monomers was visualized and analyzed using attenuated total reflection–Fourier transform infrared spectroscopy, atomic force microscopy and transmission electron microscopy. The results show that a layer of AA polymer is indeed formed on the polyamide surface, which could be accompanied by a change of the surface morphology. It was observed that for the NF membranes studied polymerization could also take place inside the pores of the support as a result of penetration of the monomer through the active layer, particularly for high degrees of grafting. It suggests that the modification procedures should be optimized so that the latter effect is minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号