首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
周锟  胡进 《力学与实践》2023,45(1):54-66

对于无边界绕流问题的计算流体力学模拟通常是将物体置于“足够大”的槽道中,而通过不断改变槽道尺寸以及离散网格密度,后验对比方式来检查模拟误差。本文结合多种经典流场理论,提出一种简单的先验误差估计方法来确定槽道尺寸以及相应的网格分布。在此方法中,对于槽道尺寸的确定基于线性叠加原理(即在极小雷诺数下采用Stokes理论解叠加,而在其他雷诺数条件下采用势流理论解叠加),来估计槽道尺寸对绕流结果的影响。而对网格尺寸与分布,则是使用多项式逼近中的基本误差分析工具,应用到速度边界层,远场势流,以及Rankine涡等简单流动,从而确定整个绕流问题中的离散误差。为了验证前面的理论分析结果,本文模拟了相当大雷诺数范围内的二维翼型以及三维圆球绕流,所得数值结果非常好地验证了理论分析。结果表明,对于Stokes流动问题,槽道尺寸需要大约100倍于物体特征尺寸来保证其结果与无边界绕流相差不超过1%;而在雷诺数超过大约100时,槽道尺寸只需10倍(二维绕流)或者5倍(三维绕流)于物体特征尺寸来达到同等精度。在此先验误差估计方法可应用于一般化的绕流问题。

  相似文献   

2.
This paper summarizes the method-of-lines (MOL) solution of the Navier–Stokes equations for an impulsively started incompressible laminar flow in a circular pipe with a sudden expansion. An intelligent higher-order spatial discretization scheme, which chooses upwind or downwind discretization in a zone-of-dependence manner when flow reversal occurs, was developed for separated flows. Stability characteristics of a linear advective–diffusive equation were examined to depict the necessity of such a scheme in the case of flow reversals. The proposed code was applied to predict the time development of an impulsively started flow in a pipe with a sudden expansion. Predictions were found to show the expected trends for both unsteady and steady states. This paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs). Solutions of the Navier–Stokes equations in primitive variables formulation by using the MOL and intelligent higher-order spatial discretization scheme are not available to date. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
This research seeks to increase our understanding on the laminar-turbulent transition under an external body force. Direct numerical simulation by the spectral method with a weak formulation is used to solve the transient 3-D Navier-Stokes equations. Initial disturbances consist of the finite-amplitude 2-D Tollmien-Schlichting wave and two 3-D oblique waves. Competitions among different modes were computed during transition for different Richardson numbers.

It is found that the body force can modify the transition mechanism of flows between two vertical plates. The body force was found to hasten the formation of three-dimensional flow. A non-laminar flow induced by the body force may present when the background flow is still laminar.  相似文献   

4.
邵帅  李明  王年华  张来平 《力学学报》2018,50(6):1470-1482
间断Galerkin有限元方法(discontinuous Galerkin method, DGM) 因具有计算精度高、模板紧致、易于并行等优点, 近年来已成为非结构/混合网格上广泛研究的高阶精度数值方法. 但其计算量和内存需求量巨大, 特别是对于网格规模达到百万甚至数千万的大型三维实际复杂外形问题, 其计算量和存储量对计算资源的消耗是难以承受的. 基于“混合重构”的DG/FV 格式可以有效降低DGM 的计算量和存储量. 本文将DDG 黏性项离散方法推广应用于DG/FV 混合算法, 得到新的DDG/FV混合格式, 以进一步提高DG/FV混合算法对于黏性流动模拟的计算效率. 通过Couette流动、层流平板边界层、定常圆柱绕流, 非定常圆柱绕流和NACA0012 翼型绕流等二维黏性流算例, 优化了DDG 通量公式中的参数选择, 验证了DDG/FV 混合格式对定常和非定常黏性流模拟的精度和计算效率, 并与广泛使用的BR2-DG 格式的计算结果和效率进行对比研究. 一系列数值实验结果表明, 本文构造的DDG/FV混合格式在二维非结构/混合网格的Navier-Stokes 方程求解中, 在达到相同的数值精度阶的前提下, 相比BR2-DG格式, 对于隐式时间离散的定常问题计算效率提高了2 倍以上, 对于显式时间离散的非定常问题计算效率提高1.6 倍, 并且在一些算例中, 混合格式具有更优良的计算稳定性. DDG/FV 混合格式提升了计算效率和稳定性, 具有良好的应用前景.   相似文献   

5.
基于Euler方程,使用有限体积法建立了一种密度为连续分层情况下、适应水深变化的水域中内波传播的数值模式.为了使计算格式能够达到二阶精度,对流项的处理使用了TVD (total variation diminishing)格式.将SIMPLE算法引入连续分层海洋中内波的数值计算,为了简化计算并方便地适应多种TVD格式,在计算预估速度场时采用了显式格式,而没有采用传统的隐式格式;鉴于在原始的SIMPLE算法中没有涉及到由于密度扰动而引起的静水压力场的改变问题,给出了该问题的计算方法.因此改进了SIMPLE算法.出流边界的处理采用阻尼消波和Sommerfeld辐射条件相结合的方式,以使内波得到有效的衰减和释放.将等水深水域的数值解和理论解进行了比较,两者吻合较好;并对存在潜堤时数值计算的不同时刻密度变化的空间分布进行了详细的定性分析.计算结果表明,所建立的数值模式能有效地模拟内波的传播和变形.   相似文献   

6.
马丽娟  徐丰  胡非  张德良 《力学与实践》2006,28(5):19-23,38
利用二维数值模拟的方法研究了侧加热腔体内的自然对流.基于数值模拟结果,描述了水平热入侵流(intrusion)的整个演化过程,并对该过程的物理机制进行了讨论.结果表明:当热入侵流抵达腔体冷壁后,由于冷壁无法卷入所有的热入侵流,热入侵流在冷上角堆积并产生一个反向流动,在冷壁边界层附近形成一个顺时针涡,该涡在浮力效应驱动下可返回热壁,并在腔体的冷热壁之间形成了腔体尺度的流体振荡,即内重力波.  相似文献   

7.
将改进后的一维时-空守恒格式推广到了二维情形,得到了一个新的一般形式的二维Euler方程时-空守恒格式,并用该格式对几个具有复杂波系的流场进行了数值模拟。结果表明,该格式保留了一维格式通用性好、结构简单的优点,其计算结果精度高,对激波等间断具有很强的分辨率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号