首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative structure–activity relationship (QSAR) models for predicting acute toxicity to Daphnia magna are often associated with poor performances, urging the need for improvement to meet REACH requirements. The aim of this study was to evaluate the accuracy, stability and reliability of a previously published QSAR model by means of further external validation and to optimize its performance by means of extension to new data as well as a consensus approach. The previously published model was validated with a large set of new molecules and then compared with ChemProp model, from which most of the validation data were taken. Results showed better performance of the proposed model in terms of accuracy and percentage of molecules outside the applicability domain. The model was re-calibrated on all the available data to confirm the efficacy of the similarity-based approach. The extended dataset was also used to develop a novel model based on the same similarity approach but using binary fingerprints to describe the chemical structures. The fingerprint-based model gave lower regression statistics, but also less unpredicted compounds. Eventually, consensus modelling was successfully used to enhance the accuracy of the predictions and to halve the percentage of molecules outside the applicability domain.  相似文献   

2.
Eight in silico modelling packages were evaluated and compared for the prediction of Daphnia magna acute toxicity from the viewpoint of the European legislation on chemicals, REACH. We tested the following models: Discovery Studio (DS) TOPKAT, ACD/Tox Suite, ADMET Predictor?, ECOSAR (Ecological Structure Activity Relationships), TerraQSAR?, T.E.S.T. (Toxicity Estimation Software Tool) and two models implemented in VEGA on 480 industrial compounds for 48-h median lethal concentrations (LC50) to D. magna, matching them with experimental values. The quality of the estimates was compared using a standard statistical review and an additional classification approach in which the hazard predictions were grouped using well-defined regulatory criteria. The regression parameters, correlation coefficient being the most influential, showed that four models (ADMET Predictor?, DS TOPKAT, TerraQSAR? and VEGA DEMETRA) had similar reliability. These performed better than the others, but the coefficient of determination was still low (r2 around 0.6), considering that at least half the predicted compounds were inside the training sets. Additionally, we grouped the results in four defined toxicity classes. TerraQSAR? gave 60% of correct classifications, followed by DS TOPKAT, ADMET Predictor? and VEGA DEMETRA, with 56%, 54% and 48%, respectively. These results highlight the challenges associated with developing reliable and easily applied acceptability criteria for the regulatory use of QSAR models to D. magna acute toxicity.  相似文献   

3.
4.
李建凤  廖立敏 《结构化学》2013,32(4):557-563
A molecular structural characterization (MSC) method called molecular vertexes correlative index (MVCI) was used to describe the structures of 30 substituted aromatic compounds. Through multiple linear regression (MLR) and stepwise multiple regression (SMR), a quantitative structure-toxicity relationship (QSTR) model with 4 variables was obtained. The correlation coefficient (R) of the model was 0.9467. Through partial least-squares regression (PLS), another QSTR model with 5 principal components was obtained. The correlation coefficient (R) of the model was 0.9518. Both models were evaluated by performing the cross-validation with the leave-one-out (LOO) procedure and the Cross-Validation (CV) correlation coefficients (RCV) were 0.9208 and 0.9214, respectively. The results suggested good stability and predictability of the models, and the molecular vertexes correlative index could successfully describe the structures of the substituted aromatic compounds.  相似文献   

5.
Abstract

Ethoxylated alcohols are the most extensively used nonionic surfactants in detergent products. The application of QSAR to their aquatic toxicity is complicated by the fact that they are multicomponent mixtures, the parent alcohols being often mixtures of isomers and homologues, each one being ethoxylated to varying degrees. A spreadsheet method for calculation of aquatic toxicity of such nonionic surfactant mixtures is presented. The method is based on a combination of the Könemann narcosis QSAR and mixture toxicity equations based on the principle of concentration addition. Log P values used in the spreadsheet calculations are themselves calculated by spreadsheet formulae based on the Leo and Hansch method modified by incorporation of the position dependent branching factor originally applied to linear alkylbenzene sulphonates. Close agreement between calculated and experimental EC50 values (48 hr Daphnia tests) is obtained for a range of ethoxylated alcohols having a diversity of branching patterns, carbon numbers and degrees of ethoxylation. The effects of increasing carbon number (decreasing EC50), branching (increasing EC50) and increasing degree of ethoxylation (increasing EC50) are all quantified.  相似文献   

6.
7.
Simplified Molecular Input Line Entry System (SMILES) nomenclature has been used as elucidating the molecular structure in construction of the quantitative structure-activity relationships (QSAR) for predicting bee toxicity. On the basis of the symbols used in the SMILES notation numerical parameters have been obtained, which are simple and fast to calculate. The method has been used to develop a QSAR model to predict toxicity of pesticides on bees. Results on a heterogeneous set of pesticides are good. Statistical characteristics of this model are: n=85, R2=0.68, s=0.82, F=180 (training set); n=20, R2=0.72, s=0.68, F=46 (test set).  相似文献   

8.
Abstract

On behalf of the Umweltbundesamt the Fraunhofer Gesellschaft has developed a software system (SAR-system) comprising more than 90 estimation models for endpoints relevant in environmental risk assessment. These estimation models are based on the approach of quantitative structure-activity relationships (QSAR). All models were checked for their validity and application range. In the last months the Umweltbundesamt started to test the applicability of some models concerning the endpoints fish acute toxicity, daphnia acute toxicity and ready (i.e., ultimate) biodegradability in the daily routine of the notification procedure. For testing these models the corresponding confidential data given in the dossiers of substances notified 1993 in Germany, were used. We were able to make calculations for 36% of the notified substances. For the remaining 64% of the chemicals it was impossible to accomplish SAR estimations due to several reasons, e.g., ionic structure of the compounds. Different results for the applicability of the mentioned endpoints are obtained. The predictions of the fish and Daphnia toxicity are in sufficient agreement with the experimental results, in case of the fish toxicity we receive 58% agreement, for the Daphnia toxicity 56% The corresponding values which were obtained in the US EPA/E.C. Joint Project on the evaluation of (quantitative) structure activity relationships were 82.3% and 70.9% About 300 different models were used for the calculations of these endpoints within the framework of the EPA/EC project. The SAR-system presented here contains 8 models for estimating the fish toxicity and 6 models for the Daphnia toxicity. For the prediction of the biodegradability the results obtained with the SAR-system are rather poor and have to be improved. Meanwhile the SAR-system is commercially available and can be ordered at the Fraunhofer Institute for Environmental Chemistry and Ecotoxicology, Schmallenberg (Germany).  相似文献   

9.
10.
11.
12.
在DFT-B3LYP/6-311+G(d,p)水平对60种非环状亚硝胺分子结构进行几何全优化,通过多元逐步线性回归(MSR)分析筛选出9个量子化学描述符作为自变量,log LD50(lethal dose 50%,LD50:大鼠口服急性毒性)作为因变量,采用人工神经网络(ANN)方法构建QSAR模型.经Levenber...  相似文献   

13.
In the present study, Quantitative Structure-Activity Relationship (QSAR) modeling has been carried out for lipid peroxidation (LPO)-inhibition potential of a set of 27 flavonoids, using structural and topological parameters. For the development of models, three methods were used: (1) stepwise regression, (2) factor analysis followed by multiple linear regressions (FA-MLR) and (3) partial least squares (PLS) analysis. The best equation was obtained from stepwise regression analysis (Q2 = 0.626) considering the leave-oneout prediction statistics.   相似文献   

14.
15.
NMR applied to living organisms is arguably the ultimate tool for understanding environmental stress responses and can provide desperately needed information on toxic mechanisms, synergistic effects, sublethal impacts, recovery, and biotransformation of xenobiotics. To perform in vivo NMR spectroscopy, a flow cell system is required to deliver oxygen and food to the organisms while maintaining optimal line shape for NMR spectroscopy. In this tutorial, two such flow cell systems and their constructions are discussed: (a) a single pump high-volume flow cell design is simple to build and ideal for organisms that do not require feeding (i.e., eggs) and (b) a more advanced low-volume double pump flow cell design that permits feeding, maintains optimal water height for water suppression, improves locking and shimming, and uses only a small recirculating volume, thus reducing the amount of xenobiotic required for testing. In addition, key experimental aspects including isotopic enrichment, water suppression, and 2D experiments for both 13C enriched and natural abundance organisms are discussed.  相似文献   

16.
ABSTRACT

Biocides are multi-component products used to control undesired and harmful organisms able to affect human or animal health or to damage natural and manufactured products. Because of their widespread use, aquatic and terrestrial ecosystems could be contaminated by biocides. The environmental impact of biocides is evaluated through eco-toxicological studies with model organisms of terrestrial and aquatic ecosystems. We focused on the development of in silico models for the evaluation of the acute toxicity (EC50) of a set of biocides collected from different sources on the freshwater crustacean Daphnia magna, one of the most widely used model organisms in aquatic toxicology. Toxicological data specific for biocides are limited, so we developed three models for daphnid toxicity using different strategies (linear regression, random forest, Monte Carlo (CORAL)) to overcome this limitation. All models gave satisfactory results in our datasets: the random forest model showed the best results with a determination coefficient r2 = 0.97 and 0.89, respectively, for the training (TS) and the validation sets (VS) while linear regression model and the CORAL model had similar but lower performance (r2 = 0.83 and 0.75, respectively, for TS and VS in the linear regression model and r2 = 0.74 and 0.75 for the CORAL model).  相似文献   

17.
Both the acute toxicity and chronic toxicity data on aquatic organisms are indispensable parameters in the ecological risk assessment priority chemical screening process (e.g. persistent, bioaccumulative and toxic chemicals). However, most of the present modelling actions are focused on developing predictive models for the acute toxicity of chemicals to aquatic organisms. As regards chronic aquatic toxicity, considerable work is needed. The major objective of the present study was to construct in silico models for predicting chronic toxicity data for Daphnia magna and Pseudokirchneriella subcapitata. In the modelling, a set of chronic toxicity data was collected for D. magna (21 days no observed effect concentration (NOEC)) and P. subcapitata (72 h NOEC), respectively. Then, binary classification models were developed for D. magna and P. subcapitata by employing the k-nearest neighbour method (k-NN). The model assessment results indicated that the obtained optimum models had high accuracy, sensitivity and specificity. The model application domain was characterized by the Euclidean distance-based method. In the future, the data gap for other chemicals within the application domain on their chronic toxicity for D. magna and P. subcapitata could be filled using the models developed here.  相似文献   

18.
Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discriminant analysis (LDA) based-approach was utilized to assign indicators such as the pesticide target species, mode of action, or target species - mode of action combination. LDA models were able to predict these indicators with about 87% accuracy. Toxicity is predicted utilizing the QSAR model fit to chemicals with that indicator. Toxicity was also predicted using a global hierarchical clustering (HC) approach which divides data set into clusters based on molecular similarity. At a comparable prediction coverage (~94%), the global HC method yielded slightly higher prediction accuracy (r2 = 0.50) than the LDA method (r2 ~ 0.47). A single model fit to the entire training set yielded the poorest results (r2 = 0.38), indicating that there is an advantage to clustering the dataset to predict acute toxicity. Finally, this study shows that whilst dividing the training set into subsets (i.e. clusters) improves prediction accuracy, it may not matter which method (expert based or purely machine learning) is used to divide the dataset into subsets.  相似文献   

19.
Abstract

A recently introduced graph-theoretical approach to the study of structure-property-activity relationships is presented. The theoretical approach and the computational strategy for the use of the TOSS-MODE approach are given with details. Several QSPR and QSAR applications are reviewed including the study of physical properties of organic compounds, diamagnetic susceptibilities, and biological properties. The applications of the TOSS-MODE approach to discrimination of active/inactive compounds, the virtual screening of compounds with a desired property from databases of chemical structures, identification of active/inactive fragments and its relationships with 2D/3D pharmacophores, and to the design of novel compounds with desired biological activities are also reviewed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号