首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stereochemical scheme of propagation was proposed for polymerizations of vinyl and related monomers by Friedel-Crafts catalysts. For the cationic propagation proceeding via the simple carbonium ion pair, the following two factors were considered to be of primary importance in determining the steric course of propagation: (1) the conformation of the last two units of the propagating polymer segment and the direction of approach of the incoming monomer; (2) the tightness of the growing ion pair. Thus, the front-side (less hindered site) attack to the carbonium ion gives rise to a syndiotactic placement and the back-side attack an isotactic placement. The present model can satisfactorily explain the effects of substituents, catalysts, polymerization media, and polymerization temperature on the steric structure of polymers in cationic polymerization of vinyl ethers. Extension of the scheme to polymerization of the β-substituted vinyl ethers in nonpolar solvents predicts formation of the diisotactic structures consistent with the experimental result. The influences of the polymerization condition on the steric structure of polymer were studied for cationic polymerizations of α-methylstyrene at low temperatures. Highly syndiotactic polymers were obtained for homogeneous reactions in toluene-rich media. The isotactic unit increased by increasing the content of methylcyclohexane in the solvent mixture. The effect of catalysts, though insignificant in toluene-rich media, was clearly noted in methylcyclohexane-rich media, less active catalysts (e.g., SnCl4) yielding higher amounts of the isotactic unit than more active catalysts (e.g., AlCl3). These results can be readily accommodated in the present model.  相似文献   

2.
This contribution reports the discovery and application of phenoxy-imine-based catalysts for olefin polymerization. Ligand-oriented catalyst design research has led to the discovery of remarkably active ethylene polymerization catalysts (FI Catalysts), which are based on electronically flexible phenoxy-imine chelate ligands combined with early transition metals. Upon activation with appropriate cocatalysts, FI Catalysts can exhibit unique polymerization catalysis (e.g., precise control of product molecular weights, highly isospecific and syndiospecific propylene polymerization, regio-irregular polymerization of higher alpha-olefins, highly controlled living polymerization of both ethylene and propylene at elevated temperatures, and precise control over polymer morphology) and thus provide extraordinary opportunities for the syntheses of value-added polymers with distinctive architectural characteristics. Many of the polymers that are available via the use of FI Catalysts were previously inaccessible through other means of polymerization. For example, FI Catalysts can form vinyl-terminated low molecular weight polyethylenes, ultra-high molecular weight amorphous ethylene-propylene copolymers and atactic polypropylenes, highly isotactic and syndiotactic polypropylenes with exceptionally high peak melting temperatures, well-defined and controlled multimodal polyethylenes, and high molecular weight regio-irregular poly(higher alpha-olefin)s. In addition, FI Catalysts combined with MgCl(2)-based compounds can produce polymers that exhibit desirable morphological features (e.g., very high bulk density polyethylenes and highly controlled particle-size polyethylenes) that are difficult to obtain with conventionally supported catalysts. In addition, FI Catalysts are capable of creating a large variety of living-polymerization-based polymers, including terminally functionalized polymers and block copolymers from ethylene, propylene, and higher alpha-olefins. Furthermore, some of the FI Catalysts can furnish living-polymerization-based polymers catalytically by combination with appropriate chain transfer agents. Therefore, the development of FI Catalysts has enabled some crucial advances in the fields of polymerization catalysis and polymer syntheses.  相似文献   

3.
Recent advances in transition metal catalyzed olefin polymerization and melt processing stimulate the production of new polymers derived from old monomers. Modern polyolefin processes do not require polymer purification and give excellent control of molecular and supermolecular polyolefin architectures. Progress in catalyst design and preparation of tailor-made homo-and copolymers is highlighted for isotactic, syndiotactic, atactic and stereo-block polypropylene (PP), novel 1-olefin copolymers, and ethylene copolymers with polar monomers, e.g., CO and acrylics. Today polyethylene short-and long-chain-branching is controlled either by uniform ethylene copolymerization with 1-olefins using single-site” metallocene catalysts, or by migratory polyinsertion of ethylene, respectively. Stiff cycloaliphatic polymers expand the frontiers of polyolefins into engineering applications. New families of polyethylenes and EPM with pendent polypropylene chains are obtained via copolymerization of PP macromonomers or polymer-analoguous coupling of functionalized PP during melt processing.  相似文献   

4.
Abstract

α-Hydroxyacetylenes (2-propyn-1-ol, DL-3-butyn-2-ol, 1-octyn-3-ol, 2-phenyl-3-butyn-2-ol) with a hydroxy functional group were polymerized by various Mo- and W-based catalysts. In general, the catalytic activities of Mo-based catalysts were greater than those of W-based catalysts for these polymerizations. In the polymerization of 2-propyn-l-ol, MoCl5 alone and the MoCl5-EtAlCl2 catalyst system gave a quantitative yield of polymer. In the polymerization of 2-propyn-l-ol and its homologues by Mo-based catalysts, the polymer yield decreased as the bulkiness of the substituent increased. On the other hand, the polymer yield increased as the bulkiness of the substituent increased in WCl6-EtAlCl2-catalyzed polymerization. Polymers with a bulkier substituent showed better solubility in organic solvents than those without a substituent [e.g., poly (2-propyn-l-ol)]. The structures of the resulting polymers were characterized by various instrumental methods such as 1H- and 13C-NMR, IR, and UV-visible spectroscopies. Thermogravimetric analyses and thermal transitions of the resulting polymers were also studied.  相似文献   

5.
间规聚丙烯的结构独特新颖,具有良好的透明性、透气性以及耐辐射性等性能。由间规聚丙烯制成的共混材料,在医疗产品、包装和汽车配件等方面具有巨大的潜在用途。要得到性能优异的商品化间规聚丙烯,就需要在催化剂的选择性、催化剂负载化和聚合工艺等方面做深入研究。本文综述了间规选择性茂金属催化剂及其聚丙烯产品的研发进展,着重介绍了间规选择性茂金属催化剂的发展及其影响催化性能的因素,同时涉及间规聚丙烯的生产工艺以及间规聚丙烯产品的加工应用等方面。  相似文献   

6.
The preparation and characterization of syndiotactic polypropylene are reported. The influence of polymerization variables on the syndiotactic regulating capacity of the VCl4–AlEt2Cl catalyst were investigated. Vanadates could be substituted for VCl4, and Al(C6H5)2Cl or AlEt2Br for AlEt2Cl under suitable conditions. Hydrogen functioned as a chain transfer agent for the AlEt2Cl–VCl4 catalyst, and polymerizations which were terminated with tritiated alcohols yielded polymers containing bound tritium. The syndio-regulating capacity of the AlEt2Cl–VCl4 catalyst was increased under specific conditions when cyclohexene, oxygen, or tert-butyl perbenzoate was incorporated. A polymerization mechanism is proposed. According to this mechanism, preference for a monomer complexing mode which minimizes steric repulsions between methyl groups of the new and last added monomer unit is responsible for syndiotactic propagation. Characterization included determination of infrared syndiotactic indices, melting points (65–131°C.), glass transition temperature, densities (0.859 to 0.885 g./cc.), nuclear magnetic resonance spectra, birefringence, differential thermal analysis spectrograms, solubility, and heat of fusion (~450 cal./mole).  相似文献   

7.
The radical polymerizations of N‐alkylacrylamides, such as N‐methyl‐(NMAAm), Nn‐propyl‐(NNPAAm), N‐benzyl‐(NBnAAm), and N‐(1‐phenylethyl)acrylamides (NPhEAAm), at low temperatures were investigated in the absence or presence of hexamethylphosphoramide (HMPA) and 3‐methyl‐3‐pentanol (3Me3PenOH), which induced the syndiotactic specificities in the radical polymerization of N‐isopropylacrylamide (NIPAAm). In the absence of the syndiotactic‐specificity inducers, the syndiotacticities of the obtained polymers gradually increased as the bulkiness of the N‐substituents increased. Both HMPA and 3Me3PenOH induced the syndiotactic specificities in the NNPAAm polymerizations as well as in the NIPAAm polymerizations. The addition of 3Me3PenOH into the polymerizations of NMAAm significantly induced the syndiotactic specificities, whereas the tacticities of the obtained polymers were hardly affected by adding HMPA. In the polymerizations of bulkier monomers, such as NBnAAm and NPhEAAm, HMPA worked as the syndiotactic specificity inducer at higher temperatures, whereas 3Me3PenOH hardly influenced the stereospecificity, regardless of the temperatures. The phase‐transition behaviors of the aqueous solutions of poly(NNPAAm)s were also investigated. It appeared that the poly (NNPAAm) with racemo dyad content of 70% exhibited unusual large hysteresis between the heating and cooling processes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4575–4583, 2008  相似文献   

8.
The stereospecific radical polymerization of vinyl esters, methacrylates, and alpha-substituted acrylates was studied. Fluoroalcohols, as a solvent, have remarkable effects on the stereoregularity of the radical polymerizations of vinyl acetate, vinyl pivalate, and vinyl benzoate, affording polymers rich in syndiotacticity, heterotacticity, and isotacticity, respectively. This method was successfully applied to the polymerization of methacrylates to give syndiotactic polymers. The steric repulsion between the entering monomer and the chain-end monomeric unit bound by the solvent through hydrogen bonding is important for the stereochemical control in these systems. Lewis acid catalysts, such as lanthanide trifluoromethanesulfonates and zinc salts, were also effective for the stereocontrol during the radical polymerization of methyl methacrylate, to reduce the syndiotacticity and alpha-(alkoxymethyl)acrylates to synthesize isotactic and syndiotactic polymers. Radical polymerization of the methacrylates bearing a bulky ester group, such as the triphenylmethyl methacrylate derivatives, gave highly isotactic polymers, as in the case of anionic polymerization. In addition, the control of one-handed helical conformation was attained in the radical polymerization of 1-phenyldibenzosuberyl methacrylate using chiral neomenthanethiol or cobalt(II) complexes as an additive.  相似文献   

9.
Various metallocenes were tested for syndiotactic polymerization of propylene. Reduction in the amount of costly methylalumoxane (MAO) or replacement with the other components was accomplished. Small modifications in the metallocene ligands brought about remarkable differences in the resulting catalysts concerning their storage stability, H2 response as well as stereo-specificity. Syndiotactic polypropylene (SPP) in the melt state behaves very differently compared to isotactic polypropylene (IPP). The notion that these polymers have different distributions of molecular entanglements are pursued, and verified for the first time. Excellent dispersibility of other olefin polymers in SPP matrix contributed to improve the usefulness of SPP.  相似文献   

10.
The first part of this paper describes cationic polymerizations of cyclic imino ethers, 2-oxazolines and 5,6-dihydro–4H–1,3–oxazines, which proceed via cyclic onium propagating species or via covalently bonded alkyl halide species. In an extreme case, both ionic and covalent species are present in equilibrium and propagate concurrently. The propagation rate constants due to the respective species were determined. A poly(cyclic imino ether) becomes hydrophilic or lipophilic dependent on the substituent of the monomer. Based on this principle, various types of nonionic polymer surfactants have been prepared, e.g., diblock and triblock copolymers, graft copolymers, and surfactants having one 2-oxazoline chain. The second part is concerned with ring-opening polymerizations of new eight cyclic trivalent phosphorus monomers. These polymerizations produced phosphorus-containing functional polymers such as a chelating resin. 31P NMR analyses of polymerization of cyclic phosphinite monomers led to propose a new mechanism of “Electrophilic Ring-Opening Polymerization”.  相似文献   

11.
The oxidative coupling polymerization of o‐cresol was investigated using various 2‐substituted pyridine/CuCl catalysts under an oxygen atmosphere, in which 2‐phenylpyridine/CuCl and 2‐(p‐tolyl)pyridine/CuCl catalysts yielded poly(o‐cresol)s with higher regioselectivity for 1,4‐coupling. These polymerizations produced branched and crosslinked polymers in the later stages of polymerization. These polymers showed good thermal properties, such as 5% weight loss temperatures of up to 406 °C and glass transition temperatures of up to 151 °C. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 878–884  相似文献   

12.
New C1‐symmetric metallocenes such as [Me2C(PhCp)(Flu)ZrCl2, [Me3Pen(Flu)]ZrCl2, [PhMe3Pen(Flu)]ZrCl2 were synthesized and used for the polymerization of propene by higher polymerization temperatures. Different polypropylene micro structures were obtained. Important for industrial processes are the high molecular weights of the polymers produced by the pentalenelike catalysts, which are very stable by higher temperatures. For synthesis of syndiotactic polystyrene and new substituted half‐sandwich titanocenes are used such as 1,3‐Me2‐CpTiCl3, Me4CpTiCl3, PhCpTiCl3, cyclohexyl‐CpTiCl3. If they are fluorinated, the activity for the production of syndiotactic polystyrene can be increased 10 times. The synthesized polymer shows a high melting point of 275°C.  相似文献   

13.
14.
This study demonstrates that the gradual and slow production of initiating radicals (i.e., hydroxyl radicals here) is the key point for the synthesis of ultra‐high molecular weight (UHMW) polymers via controlled radical polymerization. Hydrogen peroxide (H2O2) and ferrous iron (Fe2+) react via Fenton redox chemistry to initiate RAFT polymerization. This work presents two enzymatic‐mediated (i.e., Bio‐Fenton‐RAFT and Semi Bio‐Fenton‐RAFT) and one syringe pump‐driven Fenton‐RAFT polymerization processes in which the initiating radicals are carefully and gradually dosed into the reaction solution. The “livingness” of the synthesized UHMW polymers is demonstrated by chain extension and aminolysis experiments. Zimm plots obtained from static light scattering (SLS) technique are used to characterize the UHMW polymers. This Fenton‐RAFT polymerization provides access to polymers of unprecedented UHMW (Mw ~ 20 × 106 g mol?1) with potential in diverse applications. The UHMW polymers made via the controlled Fenton‐RAFT polymerization by using a syringe pump shows that it is possible to produce such materials through an easy‐to‐set up and scalable process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1922–1930  相似文献   

15.
Enzymatic polymerization denotes an in vitro polymerization via nonbiosynthetic pathways catalyzed by an isolated enzyme. This article describes the recent progress of this polymerization technique, developed mainly during this decade. The polymerization utilizes enzymes of hydrolases and oxidoreductases as catalysts. This new method of polymer synthesis provided natural polysaccharides like cellulose, amylose, xylan, and chitin, and unnatural polysaccharides catalyzed by a glycosidase from well-designed monomers, various functionalized polyesters catalyzed by lipase from a variety of monomers, and polyaromatics materials catalyzed by an oxidoreductase and an enzyme model complex from phenols and anilines. An oxidoreductase also initiated vinyl polymerizations. Characteristic features of enzymatic polymerizations are discussed, including the importance of the combination of substrate monomer and enzyme. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3041–3056, 1999  相似文献   

16.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   

17.
Methyl methacrylate (MMA) was polymerized by radical initiation at 25°C in DMF in the presence of preformed syndiotactic PMMA (sMA) with about 90% syndiotactic triads and of different M?v, viz., sMA-1, 1.6 × 105; sMA-2, 3.0 × 105; and sMA-3, 8.7 × 105. The MMA:sMA ratio was 6:1. The collected polymers were separated into two fractions by extraction with boiling acetone and characterized by 60 MHz NMR. In all cases isotactic PMMA (i-PMMA) was produced, especially in the initial reaction stages, which associated with the syndiotactic substrate to form acetone-insoluble 1:2 i/s-stereocomplexes. The isotacticity decreased with conversion and was highest in the presence of sMA-3. Characterization of the acetone-soluble fractions indicated that i,s-stereoblock polymers were also produced. From these results it is concluded that this reaction can be considered a stereospecific replica polymerization, the driving force being the strong tendency of i-PMMA and s-PMMA to associate. With sMA of M?v below about 1.2 × 105, no i-PMMA is formed; in other words, no replica polymerization occurs. For polymerizations in the presence of sMA-2, the critical M?v of propagating chains, with has to be exceeded before stereoassociation is strong enough to effectuate replica polymerization, has been estimated to be 0.6 × 105.  相似文献   

18.
Among many precursors and catalysts for alpha-olefins polymerization, one seems to be particularly interesting, because it has not been completely clarified yet. We refer especially to precursors obtained via reaction between Mg-alkyls and SiCl4. The products of this reaction are not well known; in fact, under some operating conditions, a special form of MgCl2 is obtained, showing x-ray diffraction peaks in the angular region lower than 15° (2 theta), which corresponds to the 5.9 A interplanar spacing, characteristic of alpha-MgCl2. Under other conditions, MgCl2 is obtained in the well known and strongly disordered delta structure. By employing these precursors, some catalytic systems for alpha-olefins polymerization have been prepared. In this paper, the peculiar aspects of these precursors and catalysts are described, particularly focusing on the correlation between structure and performances in ethylene and propylene polymerization.  相似文献   

19.
Stereoregular polymers like isotactic poly(N‐butenyl‐carbazole) (i‐PBK), isotactic and syndiotactic poly(N‐pentenyl‐carbazole) (i‐PPK and s‐PPK), and poly(N‐hexenyl‐carbazole) (i‐PHK and s‐PHK) are synthesized using the stereospecific homogeneous “single site” Ziegler‐Natta (Z‐N) catalysts: rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride ( 1 )/methylaluminoxane (MAO) and diphenylmethylidene(cyclopentadienyl)‐(9‐fluorenyl)zirconium dichloride ( 2 )/MAO. Catalytic activity is rationalized by density functional theory (DFT) calculations. All synthesized polymers are fully characterized by NMR, thermal, wide‐angle X‐ray diffraction, and fourier transform infrared spectroscopy analysis. Fluorescence measurements on isotactic and syndiotactic polymer films indicate that all polymers give rise to excimers, both “sandwich‐like” and “partially overlapping.” Excimer formation is essentially driven by the polymer tacticity. Isotactic polymers generate both sandwich‐like and partially overlapping excimers, while syndiotactic polymers give rise especially to partially overlapping ones. A theoretical combined molecular dynamics–time dependent DFT approach is also used to support the experimental results. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 242–251  相似文献   

20.
To determine favorable conditions for preparation of syndiotactic polymers, various factors which influence the stereoregulation of vinyl esters were studied. In bulk polymerizations, vinyl esters having bulky substituents or polar substituents were found most suitable for the syndiotactic polymerization. Tri-n-butylborane and azobisisobutylonitrile showed some difference in stereoregulation, the magnitude of the difference being dependent on the type of vinyl ester used. Solvents were found to have a significant effect on stereoregulation. Some gave higher syndiotacticity than bulk and some gave lower syndiotacticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号