首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to synthesize the higher molecular weight poly(lactic acids) by direct condensation polymerization of lactic acid, dipentaerythritol was used as a chain branching agent. Poly(lactic acids) of high molecular weight, 67000(Mn), was obtained by using antimony trioxide catalyst with good color. This poly(lactic acids) showed Tg of 54.8 °C, Tm of 147 °C and cold crystallization temperature of 115 °C. The polymer could be melt processed into transparent films. Tensile modulus of 311 Kg/ mm2, tensile strain of 21% and tensile strength of 12.41 Kg/ mm2 were obtained for film collected at 400%/min and drawn 4 times.  相似文献   

2.
The major route to convert lactic acid to high-molecular-weight polymers is ring-opening polymerization of lactide. We have investigated alternative synthesis routes based on oligomerization and chain linking to produce high-molecular-weight thermoplastic degradable polymers cost-effectively. Chain linking also offers new possibilities to prepare degradable polyesters for biomedical applications by extending the range of polymer properties achievable. In this paper, we briefly review different chain linking techniques used in our laboratory. Typically, lactic acid prepolymers with molecular weights of around 3,000-15,000 g x mol(-1) have been prepared by direct polycondensation. Hydroxyl terminated oligomers have been chain linked by using diisocyanate coupling agents, preferably 1,4-butane diisocyanate, forming poly(ester-urethanes). Poly(ester-amides) have been prepared by using 2,2'-bis(2-oxazoline) as coupling agent for carboxylic acid telechelic oligomers. Chain linking by end functionalization has been used in the preparation of poly(ester-anhydrides). In addition, a variety of crosslinked degradable polymers and copolymers have been synthesized through different crosslinking routes, by using methacrylic, itaconic or maleic double bonds or triethoxysilane moieties. A biodegradation test and ecotoxicological evaluation of the degradation products were carried out in addition to hydrolysis tests. Lactic acid based chain linked polymers were biodegradable and the degradation products were harmless. In hydrolysis tests, enzymatic degradation was pronounced in the chain linked poly(epsilon-caprolactone).  相似文献   

3.
Blends of Poly(lactic acid) with Thermoplastic Acetylated Starch   总被引:1,自引:0,他引:1  
Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of Tg by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from...  相似文献   

4.
Poly(lactic acid) (PLA) was submitted to solid state polymerization (SSP) in a fixed bed reactor under nitrogen flow, so as to examine technique efficiency for increasing the molecular weight and hence permitting the reduction of the melt polymerization residence times. In order to use a suitable starting material, SSP prepolymers of low and medium molecular weight were first prepared through solid state hydrolysis of commercial PLA grade under acidic and alkaline conditions. During these degradation runs, hydrolysis involved the random scission of ester groups in the polymer backbone, while the relevant kinetics and the resulting thermal properties were also examined. In a subsequent step, the prepolymers obtained were subjected to SSP at three temperatures, approximately 2.5–25.0 °C below their melting point. The process achieved an increase of up to 1.7 times the initial molecular weight, however, with different trends depending on the prepolymer characteristics, reaction temperature and time, as well as the pH of the hydrolysis medium. In addition to molecular weight build up, the effect of the SSP process on end product thermal properties was also investigated.  相似文献   

5.
More than 23 million tonnes of lignin are produced annually in the US from wood pulping and 98% of this lignin is burnt. Therefore, creating products from lignin, such as plastics, offers an approach for obtaining sustainable materials in a circular economy. Lignin-based copolymers were synthesized using a single pot, solvent free, melt condensation reaction. The synthesis occurred in two stages. In the first stage, a biobased prepolymer consisting of butanediol (BD, 0.8–1 molar content) and a diacid (succinic (SA), adipic (AA) and suberic acids (SuA), with varying amounts of diaminobutane (DAB, 0–0.2 molar content) was heated under vacuum and monitored by Fourier transform infra-red (FTIR) spectroscopy and electrospray ionization-mass spectrometry (ESI-MS). In the second stage, prepolymer was mixed with a softwood kraft lignin (0–50 wt.%) and further reacted under vacuum at elevated temperature. Progression of the polymerization reaction was monitored using FTIR spectroscopy. The lignin-copolyester/amide properties were characterized using tensile testing, X-ray diffraction (XRD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Lignin co-polymer tensile (strength 0.1–2.1 MPa and modulus 2 to 338 MPa) properties were found to be influenced by the diacid chain length, lignin, and DAB contents. The lignin-copolymers were shown to be semi-crystalline polymer and have thermoplastic behavior. The SA based copolyesters/amides were relatively stiff and brittle materials while the AA based copolyesters/amides were flexible and the SuA based copolyesters/amides fell in-between. Additionally, > 30 wt.% lignin the lignin- copolyesters/amides did not exhibit melt behavior. Lignin-co-polyester/amides can be generated using green synthesis methods from biobased building blocks. The lignin- copolyesters/amides properties could be tuned based on the lignin content, DAB content and diacid chain length. This approach shows that undervalued lignin can be used in as a macromonomer in producing thermoplastic materials.  相似文献   

6.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
1,3-PBO扩链改性端羧基聚乳酸的性能表征   总被引:1,自引:0,他引:1  
以乳酸为原料、辛酸亚锡为催化剂,采用梯度升温法,在170℃、0.098 MPa条件下直接熔融缩聚合成端羧基共聚物P(LA/SA).将其用2,2-(1,3-亚苯基)-二噁唑啉(1,3-PBO)扩链,按n(—COOH)/n(—oxazoline)=1∶1.4比例加入1,3-PBO,在150℃,0.098 MPa条件下反应15 min制得聚酰胺酯(PEA).采用GPC、FTIR、1H-NMR、DSC、XRD、TGA、SEM等手段对聚合物的结构进行了表征和性能测试.结果表明,与P(LA/SA)相比,扩链产物相对分子质量大幅度提高,重均分子量达36×104;产物Tg比PLA升高,材料的刚性增强;产物热稳定性能提高,为一步分解;产物结晶度较P(LA/SA)降低,其柔韧性较P(LA/SA)增强,但相对于PLA有所降低.  相似文献   

8.
The syntheses of four new monomers and two new polyaromatic pyrazines are described. The monomers; bis-p,p′-(octanoyl)diphenyl ether (Ia), bis-p,p′-(hexadecanoyl)diphenyl ether (Ib), bis-p,p′-(α-bromooctanoyl)diphenyl ether (IIa), and bis-p,p′-(α-bromohexadecanoyl)diphenyl ether (IIb), were produced by Friedel-Crafts acylation of diphenyl ether with the corresponding acyl chloride and subsequent α-bromination. Prepolymers were synthesized by the condensation of (IIa) and (IIb) with ammonia in N,N-dimethylformamide (DMF), and polymers were prepared by subsequent melt condensation of the prepolymer to produce poly[2,5-(oxydiphenylene)-3,6-(dihexyl)pyrazine] (IIIa), and poly[2,5-(oxydiphenylene)-3,6-(ditetradecyl)pyrazine] (IIIb). Polymer IIIa was thermally (stable at >400°C while polymer IIIb was a tacky substance). The inherent viscosity of IIIa produced by 12 hr of melt condensation was 0.30 dl/g in formic acid. Additional heating in excess of 24 hr gave a slightly soluble polymer. The inherent viscosity of IIIb produced by 40 hr of melt condensation was 0.37 dl/g in formic acid.  相似文献   

9.
The free‐radical crosslinking polymerization of diallyl adipate (DAA) was carried out in the presence of poly(benzyl methacrylate) (poly(BzMA)) as a chemically inactive polymer in order to clarify the topological bonding formation between linear polymer and prepolymer before gelation; we found by chance that even at an early stage of the polymerization, the topological bonding was formed between ultra‐high molecular weight poly(BzMA) and poly(DAA) prepolymer.  相似文献   

10.
This work reports the study of the effect of chemical functionalization of carbon nanotubes on their dispersion in poly(lactic acid). The nanotubes were functionalized by the 1,3‐dipolar cycloaddition reaction, generating pyrrolidine groups at the nanotube surface. Further reaction of the pyrrolidine groups with poly(lactic acid) was studied in solution and in the polymer melt. The former involved refluxing the nanotubes in a dimethylformamide/polymer solution; the latter was carried out by direct melt mixing in a microcompounder. The carbon nanotubes collected after each process were characterized by thermogravimetry and by X‐ray photoelectron spectroscopy, showing evidence of polymer bonded to the nanotube surface only when the reaction was carried out in the polymer melt. The composites with polymer modified nanotubes present smaller average agglomerate area and a narrower agglomerate area distribution. In addition, they show improved tensile properties at low CNT concentration and present lower electrical resistivity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3740–3750  相似文献   

11.
A series of enzymatically recyclable poly(ester-urethane)s consisting of a biodegradable diurethane moiety as a hard segment and an ester moiety as an enzymatically cleavable linkage was chemo-enzymatically prepared by two routes. The poly(ester-urethane) was prepared by a) the ring-opening polymerization of a cyclic ester-urethane monomer synthesized via the transesterification reaction of biodegradable diurethanediol and dicarboxylate ester using lipase and b) the direct polycondensation of a diurethanediol and a dicarboxylate ester. A significantly higher molecular-weight poly(ester-urethane) having the highest molecular weight (Mw) of 101,000 was produced by the ring-opening polymerization of the cyclic ester-urethane monomer when compared with that produced by the polycondensation of the dicarboxylate ester with diurethanediol. The poly(ester-urethane) was readily degraded by lipase into the corresponding cyclic oligomers; the oligomers were readily repolymerized by the ring-opening polymerization using lipase for chemical recycling.  相似文献   

12.
We succeeded in developing the acyl chloride‐facilitated condensation polymerization method for the synthesis of new poly(anhydride‐ester)s with aromatic side groups, which cannot be polymerized by the classic melt condensation polymerization method. Using chlorinated and acylated carboxylic acids as the intermediates, the polymerization was carried out at low temperatures of 120 or 135 °C to yield pure poly(anhydride‐ester)s of molecular weights as high as 1.55 × 105 with minimal side‐reactions. A homogeneous route of preparation was developed and optimized, using butyric anhydride as the acylating reagent and oxalyl chloride as the chlorinating reagent. A comparison of the mechanisms of the classic method and the new method indicates that the effects of transacylation—cyclization and oligomer formation—were greatly reduced due to the high reactivity of carboxylic acid chloride and the steric effect of bulky acyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5899–5915, 2007  相似文献   

13.
Poly(2-alkyl-2-oxazoline)s having an acrylate group at both chain ends were synthesized by terminating living bifunctional poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline) with acrylic acid. These macromonomers have been polymerized to the corresponding polyoxazoline networks. Thermal as well as UV-initiated free radical polymerization were applied and the influence of the polymerization conditions and molecular weight of the prepolymer used on the properties of the networks were investigated. Both methods of polymerization produced high fractions of soluble material, probably due to the low concentration of the acrylate end groups.  相似文献   

14.
High molecular weight poly(dimethylsiloxane)/semicrystalline cycloaliphatic polyester segmented copolymers based on dimethyl-1,4-cyclohexane dicarboxylate were prepared and characterized. The copolymers were synthesized using a high trans content isomer that afforded semicrystalline morphologies. Aminopropyl-terminated poly(dimethylsiloxane) (PDMS) oligomers of controlled molecular weight were synthesized, end capped with excess diester to form a diester-terminated oligomer, and incorporated via melt transesterification step reaction copolymerization. The molecular weight of the polysiloxane and chemical composition of the copolymer were systematically varied. The polysiloxane segment was efficiently incorporated into the copolymers via an amide link and its structure was unaffected by low concentrations of titanate transesterification catalyst, as shown by control melt experiments. The homopolymer and copolymers were characterized by solution, thermal, mechanical, and surface techniques. The segmented copolymers were microphase separated as determined by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by transmission electron microscopy (TEM). It was demonstrated that relatively short poly(dimethylsiloxane) segment lengths and compositions were required to maintain single phase melt polymerization conditions. This was, in fact, the key to the successful preparation of these materials. The copolymers derived from short poly(dimethylsiloxane) segments demonstrated good mechanical properties, melt viscosities representative of single phase polymer melts, and were easily compression molded into films. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3495–3506, 1997  相似文献   

15.
Transparent biaxial oriented poly(lactic acid) (BOPLA) films with improved dimensional stability were successfully prepared by controlling the crystallization of poly(lactic acid) (PLA). The crystalline morphology of PLA films can be manipulated by changing certain processing parameters, such as stretch ratio, heat setting temperatures, and heat setting time. Optical and mechanical properties as well as dimensional stability of the resulting polymer films are governed by their crystallinity and crystalline morphology. Crystallization behavior and kinetics of PLA, therefore, were investigated using wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC) techniques. Mechanical properties and the dimensional stability of the biaxial oriented PLA films were obtained and correlated with their processing conditions. Poly(lactic acid) films prepared by melt extrusion methods have great potential for food packaging, shrink labeling and protective film applications. However, shrinkage at elevated processing temperature should be minimized to avoid puckering of the polymer film. Shrinkage of less than 2% was achieved for a BOPLA film stretched 300% in both directions at 75 °C and then annealed at 160 °C for 30 s. Fabrication, properties, and potential applications of a series of biodegradable films will be described.  相似文献   

16.
首先,采用乳酸为引发剂,辛酸亚锡为催化剂,引发丙交酯开环聚合制得具有缩聚活性的L-聚乳酸和D-聚乳酸;然后,将两者熔融共混后进行固相缩聚,合成了一系列立体嵌段聚乳酸。采用核磁共振(NMR)、凝胶渗透色谱(GPC)及差示扫描量热仪(DSC)分析了产物的链结构、重均分子量、热性能,并探讨了均相晶体和立体复合晶体共存情况下的固相缩聚机理。结果表明,固相缩聚产物分子量增长的适宜反应条件为:反应时间30h,较低的催化剂含量,L-聚乳酸质量分数为80%。L-聚乳酸和D-聚乳酸共混物较低的初始立体复合晶体结晶度有利于后续固相缩聚过程中产物分子量的增长;固相缩聚不仅发生在异链之间,而且也发生在同链之间。  相似文献   

17.
The melt polycondensation reaction of the prepolymer prepared from N-(benzyloxycarbonyl)-L -aspartic acid anhydride (N-CBz-L -aspartic acid anhydride) and low molecular weight poly(ethylene glycol) (PEG) using titanium isopropoxide (TIP) as a catalyst produced the new biodegradable poly(L -aspartic acid-co-PEG). This new copolymer had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the preparation of the prepolymer were obtained by using a 0.12 mol % of p-toluenesulfonic acid with PEG 200 for 48 h. The weight-average molecular weight of the prepolymer increased from 1,290 to 31,700 upon melt polycondensation for 6 h at 130°C under vacuum using 0.5 wt % TIP as a catalyst. The synthesized monomer, prepolymer, and copolymer were characterized by FTIR, 1H- and 13C-NMR, and UV spectrophotometers. Thermal properties of the prepolymer and the protected copolymer were measured by DSC. The glass transition temperature (Tg) of the prepolymer shifted to a significantly higher temperature with increasing molecular weight via melt polycondensation reaction, and no melting temperature was observed. The in vitro hydrolytic degradation of these poly(L -aspartic acid-co-PEG) was measured in terms of molecular weight loss at different times and pHs at 37°C. This pH-dependent molecular weight loss was due to a simple hydrolysis of the backbone ester linkages and was characterized by more rapid rates of hydrolysis at an alkaline pH. These new biodegradable poly(L -aspartic acid-co-PEG)s may have potential applications in the biomedical field. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2949–2959, 1998  相似文献   

18.
Poly(lactic acid)(PLA)is one of the most important bio-plastics,and chemical modification of the already-polymerized poly(lactic acid)chains may enable optimization of its material properties and expand its application areas.In this study,we demonstrated that poly(lactic acid)can be readily dissolved in acrylic acid at room temperature,and acrylic acid can be graft-polymerized onto poly(lactic acid)chains in solution with the help of photoinitiator benzophenone under 254 nm ultraviolet(UV)irradiation.Similar photo-grafting polymerization of acrylic acid(PAA)has only been studied before in the surface modification of polymer films.The graft ratio could be controlled by various reaction parameters,including irradiation time,benzophenone content,and monomer/polymer ratios.This photo-grafting reaction resulted in high graft ratio(graft ratio PAA/PLA up to 180%)without formation of homopolymers of acrylic acid.When the PAA/PLA graft ratio was higher than 100%,the resulting PLA-g-PAA polymer was found dispersible in water.The pros and cons of the photo-grafting reaction were also discussed.  相似文献   

19.
《European Polymer Journal》1987,23(7):501-506
Various routes have been examined for the synthesis of high molecular weight polyamic acid derivatives of the poly(4-aminophthalic anhydride)-type transformable into polyimides with improved mechanical properties. Polymerization of 4-aminophthalic anhydride and of some derivatives (hydrobromide, monomethyl ester, methyl-trimethylsilyl diester) led to soluble polymers with rather low molecular weights. Limitations of molecular weights are discussed in terms of chain-end deactivation because of oxidation (NH2), of hydrolysis (anhydride) or of the presence of monofunctional impurities. Attempts to reactivate chain-ends are described. It is shown that hydrogenation of a polyamic acid prepolymer and further polymerization double the molecular weight of the prepolymer. Among the precursors which are considered, only the methyl-trimethylsilyl diester of 4-aminophthalic acid led to glass-adherent films after polyimidification.  相似文献   

20.
Due to the environmental pollution caused by the petroleum-based polymer, poly (lactic acid) (PLA), a biodegradable and biocompatible polymer that obtained from natural and renewable sources, has attracted widespread attention. However, the brittleness of PLA greatly limits its application. In this study, the super toughened PLA-based blends were obtained by compatibilizing the PLA/thermoplastic polyurethane (TPU) blends with the polyurethane elastomer prepolymer (PUEP) as an active compatibilizer. The mechanical properties, thermal properties and corresponding toughening mechanism of PLA/TPU/PUEP system were studied by tensile test, instrumented impact test, dynamic mechanical analysis (DMA), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All the results demonstrate that the isocyanate (−NCO) group in PUEP is successfully reacted with the –OH groups at both sides of the PLA and the obtained polyurethane (PU)~PLA copolymer (PU ~ cõ PLA) significantly improves the interfacial compatibility of PLA/TPU blends. The gradually refined dispersed phase size and fuzzy phase interface as displayed in SEM images suggest a good interfacial compatibilization in the PLA/TPU/PUEP blends, probably due to the isocyanate reaction between PLA and PUEP. And the interfacial reaction and compatibilization among the components led to the formation of super toughened PLA/TPU/PUEP blends. And the instrumented impact results indicate that most of the impact toughness is provided by the crack propagation rather than the crack initiation during the entire fracture process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号