首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

2.
Selective inhibition of phosphodiesterase 2 (PDE2) in cells where it is located elevates cyclic guanosine monophosphate (cGMP) and acts as novel analgesic with antinociceptive activity. Three-dimensional quantitative structure–activity relationship (QSAR) studies for pyrazolodiazepinone inhibitors exhibiting PDE2 inhibition were performed using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and Topomer CoMFA, and two-dimensional QSAR study was performed using a Hologram QSAR (HQSAR) method. QSAR models were generated using training set of 23 compounds and were validated using test set of nine compounds. The optimum partial least squares (PLS) for CoMFA-Focusing, CoMSIA-SDH, Topomer CoMFA and HQSAR models exhibited good ‘leave-one-out’ cross validated correlation coefficient (q2) of 0.790, 0.769, 0.840 and 0.787, coefficient of determination (r2) of 0.999, 0.964, 0.979 and 0.980, and high predictive power (r2pred) of 0.796, 0.833, 0.820 and 0.803 respectively. Docking studies revealed that those inhibitors able to bind to amino acid Gln859 by cGMP binding orientation called ‘glutamine-switch’, and also bind to the hydrophobic clamp of PDE2 isoform, could possess high selectivity for PDE2. From the results of all the studies, structure–activity relationships and structural requirements for binding to active site of PDE2 were established which provide useful guidance for the design and future synthesis of potent PDE2 inhibitors.  相似文献   

3.
4.
5.
In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4?amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules. The r2 values for the training and test sets were 0.89 and 0.82, respectively. The Q2 values for leave-one-out cross-validation (LOO-CV) and leave-many-out cross-validation (LMO-CV) tests on the training set were 0.65 and 0.64, respectively. The CoMFA model was validated by calculating several statistical parameters. CoMFA contour maps were interpreted, and structural features that influence the CD38 inhibitory activity of molecules were determined. Finally, seven new CD38 inhibitors with greater activity with respect to the greatest active molecules were designed.  相似文献   

6.
7.
SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q 2) of 0.602 and 0.618, respectively, and conventional coefficients (r 2) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r 2 pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.  相似文献   

8.
Human African trypanosomiasis (HAT) is a neglected tropical disease, and some drugs treating HAT have been used for even more than 60 years. Currently, a series of benzyl phenyl ether diamidine derivatives are discovered, which exhibit high antiprotozoal activities and low cytotoxicity, leading to good development prospects. The comparative molecular field analysis (CoMFA) and the comparative molecular similarity indices analysis (CoMSIA) are used to study the relationship between the structure and antiprotozoal activities. The established 3D QSAR model shows not only significant statistical quality, but also satisfies predictive ability: the best CoMFA model had r2 = 0.958 and q2 = 0.766, the best CoMSIA model had r2 = 0.957 and q2 = 0.812, the predictive ability of CoMFA and CoMSIA model were further confirmed by a test set which had 11 compounds, giving the correlation coefficient Qext2 of 0.792, 0.873, respectively. The contour maps and contribution maps show important features that can improve the antiprotozoal activity: position 3 from substituent R4 should be a low electronegativity group, position 4 from substituent R4 should have higher electronegativity, substituent R2 should be selected to a low electronegativity and small bulk group. Together these results may offer some useful theoretical information in designing potential inhibitors.  相似文献   

9.
Alzheimer’s disease (AD) is a multifactorial and polygenic disease. It is the most prevalent reason for dementia in the aging population. A dataset of twenty-six 1,2,3-triazole-based derivatives previously synthetized and evaluated for acetylcholinesterase inhibitory activity were subjected to the three-dimensional quantitative structure-activity relationship (3D-QSAR) study. Good predictability was achieved for comparative molecular field analysis (CoMFA) (Q2 = 0.604, R2 = 0.863, rext2 = 0.701) and comparative molecular similarity indices analysis (CoMSIA) (Q2 = 0.606, R2 = 0.854, rext2 = 0.647). The molecular features characteristics provided by the 3D-QSAR contour plots were quite useful for designing and improving the activity of acetylcholinesterase of this class. Based on these findings, a new series of 1,2,3-triazole based derivatives were designed, among which compound A1 with the highest predictive activity was subjected to detailed molecular docking and compared to the most active compound. The selected compounds were further subjected to 20 ns molecular dynamics (MD) simulations to study the comparative conformation dynamics of the protein after ligand binding, revealing promising results for the designed molecule. Therefore, this study could provide worthy guidance for further experimental analysis of highly effective acetylcholinesterase inhibitors.  相似文献   

10.
Three-dimension quantitative structure activity relationship (3D-QSAR) was one of the major statistical techniques to investigate the correlation of biological activity with structural properties of candidate molecules, and the accuracy of statistic greatly depended on molecular alignment methodology. Exhaustive conformational search and successful conformational superposition could extremely improve the predictive accuracy of QSAR modeling. In this work, we proposed a solution to optimize QSAR prediction by multiple-conformational alignment methods, with a set of 40 flexible PTP1B inhibitors as case study. Three different molecular alignment methods were used for the development of 3D-QSAR models listed as following: (1) docking-based alignment (DBA); (2) pharmacophore-based alignment (PBA) and (3) co-crystallized conformer-based alignment (CCBA). Among these three alignments, it was indicated that the CCBA was the best and the fastest strategy in 3D-QSAR development, with the square correlation coefficient (r2) and cross-validated squared correlation coefficient (q2) of comparative molecular field analysis (CoMFA) were 0.992 and 0.694; the r2 and q2 of comparative molecular similarity indices analysis (CoMSIA) were 0.972 and 0.603, respectively. The alignment methodologies used here not only generated a robust QSAR model with useful molecular field contour maps for designing novel PTP1B inhibitors, but also provided a solution for constructing accurate 3D-QSAR model for various disease targets. Undoubtedly, such attempt in QSAR analysis would greatly help us to understand essential structural features of inhibitors required by its target, and so as to discover more promising chemical derivatives.  相似文献   

11.
In the present work, a set of ligand‐ and receptor‐based 3D‐QSAR models were developed to explore the structure–activity relationship of 109 benzimidazole‐based interleukin‐2‐inducible T‐cell kinase (ITK) inhibitors. In order to reveal the requisite 3D structural features impacting the biological activities, a variety of in silico modeling approaches including the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking, and molecular dynamics were applied. The results showed that the ligand‐based CoMFA model (Q2 = 0.552, R2ncv = 0.908, R2pred = 0.787, SEE = 0.252, SEP = 0.558) and CoMSIA model (Q2 = 0.579, R2ncv = 0.914, R2pred = 0.893, SEE = 0.240, SEP = 0.538) were superior to other models with greater predictive power. In addition, a combined analysis between the 3D contour maps and docking results showed that: (1) Compounds with bulky or hydrophobic substituents near ring D and electropositive or hydrogen acceptor groups around rings C and D could increase the activity. (2) The key amino acids impacting the receptor–ligand interactions in the binding pocket are Met438, Asp500, Lys391, and Glu439. The results obtained from this work may provide helpful guidelines in design of novel benzimidazole analogs as inhibitors of ITK. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.

Xanthine oxidase, a complex molybdoflavoprotein, catalyzes the hydroxylation of xanthine to uric acid, which has emerged as an important target for gout and hyperuricemia. In this work, a combination of molecular modeling methods was performed on a series of febuxostat analogues as xanthine oxidase inhibitors to establish molecular models for new drug design, including three-dimensional quantitative structure–activity relationship, topomer comparative molecular field analysis (CoMFA), molecular docking and molecular dynamic simulations. The optimal CoMFA model yielded a leave-one-out correlation coefficient (q2) of 0.841 and a non-validated correlation coefficient (r2) of 0.985. The respective q2 and r2 of the best comparative molecular similarity indices analysis (CoMSIA) model were 0.794 and 0.972, respectively. The Topomer CoMFA model provided a q2 of 0.915 and an r2 of 0.977. 3D contour maps generated from CoMFA and CoMSIA have identified several key features responsible for the inhibition activity. Molecular modeling was taken to further elucidate the proposed binding conformations of the inhibitors to the protein. The obtained results can be served as a useful guideline for designing novel febuxostat derivatives with improved activity against xanthine oxidase.

  相似文献   

14.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a Ser/Thr kinase which phosphorylates and activates members of the AGC kinase group known to control processes such as tumor cell growth, protection from apoptosis, and tumor angiogenesis. In this paper, CoMFA and CoMSIA studies were carried out on a training set of 56 conformationally rigid indolinone inhibitors of PDK1. Predictive 3D QSAR models, established using atom fit alignment rule based on crystallographic-bound conformation, had cross-validated (r cv2) values of 0.738 and 0.816 and non-cross-validated (r ncv2) values of 0.912 and 0.949 for CoMFA and CoMSIA models, respectively. The predictive ability of the CoMFA and CoMSIA models was determined using a test set of 14 compounds, which gave predictive correlation coefficients (r pred2) of 0.865 and 0.837, respectively. Structure-based interpretation of the CoMFA and CoMSIA field properties provided further insights for the rational design of new PDK1 inhibitors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The p38 protein kinase is a serine–threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r 2 (q 2) value of 0.516 and conventional r 2 of 0.950, while the best CoMSIA model yielded a q 2 of 0.455 and r 2 of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein–inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.  相似文献   

16.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

17.
The 3D QSAR analysis using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques is performed on novel nalidixic acid based 1,2,4-triazole derivatives suggested earlier as antibacterial agents. The CoMFA and CoMSIA models employed for a training set of 28 compounds gives reliable values of Q2 (0.53 and 0.52, respectively) and R2 (0.79 and 0.85, respectively). The contour maps produced by the CoMFA and CoMSIA models are used to determine a three-dimensional quantitative structure-activity relationship. Based on the 3D QSAR contours new molecules with high predicted activities are designed. In addition, surflex-docking is performed to confirm the stability of predicted molecules in the receptor.  相似文献   

18.
In this study we designed novel substituted benzimidazole derivatives and predicted their absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, based on a predictive 3D QSAR study on 132 substituted benzimidazoles as AngII–AT1 receptor antagonists. The two best predicted compounds were synthesized and evaluated for AngII–AT1 receptor antagonism. Three different alignment tools for comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used. The best 3D QSAR models were obtained using the rigid body (Distill) alignment method. CoMFA and CoMSIA models were found to be statistically significant with leave-one-out correlation coefficients (q2) of 0.630 and 0.623, respectively, cross-validated coefficients (r2cv) of 0.651 and 0.630, respectively, and conventional coefficients of determination (r2) of 0.848 and 0.843, respectively. 3D QSAR models were validated using a test set of 24 compounds, giving satisfactory predicted results (r2pred) of 0.727 and 0.689 for the CoMFA and CoMSIA models, respectively. We have identified some key features in substituted benzimidazole derivatives, such as lipophilicity and H-bonding at the 2- and 5-positions of the benzimidazole nucleus, respectively, for AT1 receptor antagonistic activity. We designed 20 novel substituted benzimidazole derivatives and predicted their activity. In silico ADMET properties were also predicted for these designed molecules. Finally, the compounds with best predicted activity were synthesized and evaluated for in vitro angiotensin II–AT1 receptor antagonism.  相似文献   

19.
The Aurora proteins are critical regulators of major mitotic events and attractive targets for anticancer therapy. 3D‐QSAR studies based on molecular docking were performed on a dataset of 40 4‐aminoquinazolines compounds. The CoMSIA model produced significantly better results than CoMFA model, with q2=0.652 and r2=0.991. The contours analysis provides useful information about the structural requirements for 4‐aminoquinazolines for inhibiting Aurora B. Scaffold hopping method was used to generate new structures based on the maximum common substructure of the training and test set compounds. The ADMET property, binding affinity and inhibitory activity of the new designed compounds were predicted, respectively. Finally 16 compounds were identified as the novel inhibitors for Aurora B kinase.  相似文献   

20.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号