首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
Under the current chemicals legislation, the regulatory use of structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs), collectively referred to as (Q)SARs, for the assessment of chemicals is limited, partly due to concerns about the extent to which (Q)SAR estimates can be relied upon. On 29 October 2003, the European Commission adopted a legislative proposal that foresees the introduction of a new regulatory system for chemicals called REACH (Registration, Evaluation, and Authorisation of Chemicals), which will impose equivalent information requirements on both new and existing chemicals. For reasons of practicality, cost-effectiveness and animal welfare, it is envisaged that (Q)SARs will play an important role in the assessment of some 30,000 existing chemicals for which further information may be required under the REACH system. It will therefore be essential that the (Q)SAR models used will produce reliable estimates. To overcome the barriers in the acceptance of (Q)SARs for regulatory purposes, it is widely acknowledged that there needs to be international agreement on the principles of (Q)SAR validation, and that the process of (Q)SAR validation should be managed by independent organisations, with a view to providing independent advice to the regulators who make decisions on the acceptability of (Q)SARs. The European Centre for the Validation of Alternative Methods (ECVAM), which is part of the European Commission's Joint Research Centre (JRC), has a well-established role in providing independent scientific and technical advice to European policy makers. This paper describes progress made at an international level regarding the principles of validation, and explains the role of ECVAM regarding the practical validation of (Q)SARs.  相似文献   

3.
Under the proposed REACH (Registration, Evaluation and Authorisation of CHemicals) legislation, (Q)SAR models and grouping methods (chemical categories and read across approaches) are expected to play a significant role in prioritising industrial chemicals for further assessment, and for filling information gaps for the purposes of classification and labelling, risk assessment and the assessment of persistent, bioaccumulative and toxic (PBT) chemicals. The European Chemicals Bureau (ECB), which is part of the European Commission's Joint Research Centre (JRC), has a well-established role in providing independent scientific and technical advice to European policy makers. The ECB also promotes consensus and capacity building on scientific and technical matters among stakeholders in the Member State authorities and industry. To promote the availability and use of (Q)SARs and related estimation methods, the ECB is carrying out a range of activities, including applied research in computational toxicology, the assessment of (Q)SAR models and methods, the development of technical guidance documents and computational tools, and the organisation of training courses. This article provides an overview of ECB activities on computational toxicology, which are intended to promote the development, validation, acceptance and use of (Q)SARs and related estimation methods, both at the European and international levels.  相似文献   

4.
Under the proposed REACH (Registration, Evaluation and Authorisation of CHemicals) legislation, (Q)SAR models and grouping methods (chemical categories and read across approaches) are expected to play a significant role in prioritising industrial chemicals for further assessment, and for filling information gaps for the purposes of classification and labelling, risk assessment and the assessment of persistent, bioaccumulative and toxic (PBT) chemicals. The European Chemicals Bureau (ECB), which is part of the European Commission's Joint Research Centre (JRC), has a well-established role in providing independent scientific and technical advice to European policy makers. The ECB also promotes consensus and capacity building on scientific and technical matters among stakeholders in the Member State authorities and industry. To promote the availability and use of (Q)SARs and related estimation methods, the ECB is carrying out a range of activities, including applied research in computational toxicology, the assessment of (Q)SAR models and methods, the development of technical guidance documents and computational tools, and the organisation of training courses. This article provides an overview of ECB activities on computational toxicology, which are intended to promote the development, validation, acceptance and use of (Q)SARs and related estimation methods, both at the European and international levels.  相似文献   

5.
In Europe, REACH legislation encourages the use of alternative in silico methods such as (Q)SAR models. According to the recent progress of Chemical Substances Control Law (CSCL) in Japan, (Q)SAR predictions are also utilized as supporting evidence for the assessment of bioaccumulation potential of chemicals along with read across. Currently, the effective use of read across and QSARs is examined for other hazards, including biodegradability. This paper describes the results of external validation and improvement of CATALOGIC 301C model based on more than 1000 tested new chemical substances of the publication schedule under CSCL. CATALOGIC 301C model meets all REACH requirements to be used for biodegradability assessment. The model formalism built on scientific understanding for the microbial degradation of chemicals has a well-defined and transparent applicability domain. The model predictions are adequate for the evaluation of the ready degradability of chemicals.  相似文献   

6.
Abstract

One of the key challenges of Canada’s Chemicals Management Plan (CMP) is assessing chemicals with limited/no empirical hazard data for their risk to human health. In some instances, these chemicals have not been tested broadly for their toxicological potency; as such, limited information exists on their potential to induce human health effects following exposure. Although (quantitative) structure activity relationship ((Q)SAR) models are able to generate predictions to address data gaps for certain toxicological endpoints, the confidence in predictions also needs to be addressed. One way to address this issue is to apply a chemical space approach. This approach uses international toxicological databases, for example, those available in the Organisation for Economic Co-operation and Development (OECD) QSAR Toolbox. The approach,assesses a model’s ability to predict the potential hazards of chemicals that have limited hazard data that require assessment under the CMP when compared to a larger, data-rich chemical space that is structurally similar to chemicals of interest. This evaluation of a model’s predictive ability makes (Q)SAR analysis more transparent and increases confidence in the application of these predictions in a risk-assessment context. Using this approach, predictions for such chemicals obtained from four (Q)SAR models were successfully classified into high, medium and low confidence levels to better inform their use in decision-making.  相似文献   

7.
An integrated framework of data analysis has been proposed to systematically address the determination of the domain of applicability (DA) of some commercial Quantitative Structure Activity Relationship ((Q)SAR) models based on the structure of test chemicals. This framework forms one of the important steps in dealing with the growing concerns on reliability of model-based predictions on toxicity of chemicals specifically in the regulatory context. The present study uses some of the well-known mutagenicity and carcinogenicity models that are available within the Casetox (MultiCASE Inc.) and TOPKAT (Accelrys Software Inc.) programs. The approach enumerated in this paper employs chemoinformatics tools that facilitate comparisons of key structural features as well as application of cluster analysis techniques. The approach has been illustrated using a set of eleven chemical structures selected from the Canadian Domestic Substances List (DSL) that are not present in the model training sets, and the efficacy of the approach has also been assessed using seven chemicals with known toxicities. The methodologies presented here could help address the issue of DA of complex (Q)SAR models and at the same time, serve as useful tools for regulators to make a preliminary assessment of (Q)SAR based systems thereby helping the process of hazard-based regulatory assessments of chemicals.  相似文献   

8.
An integrated framework of data analysis has been proposed to systematically address the determination of the domain of applicability (DA) of some commercial Quantitative Structure Activity Relationship ((Q)SAR) models based on the structure of test chemicals. This framework forms one of the important steps in dealing with the growing concerns on reliability of model-based predictions on toxicity of chemicals specifically in the regulatory context. The present study uses some of the well-known mutagenicity and carcinogenicity models that are available within the Casetox (MultiCASE Inc.) and TOPKAT (Accelrys Software Inc.) programs. The approach enumerated in this paper employs chemoinformatics tools that facilitate comparisons of key structural features as well as application of cluster analysis techniques. The approach has been illustrated using a set of eleven chemical structures selected from the Canadian Domestic Substances List (DSL) that are not present in the model training sets, and the efficacy of the approach has also been assessed using seven chemicals with known toxicities. The methodologies presented here could help address the issue of DA of complex (Q)SAR models and at the same time, serve as useful tools for regulators to make a preliminary assessment of (Q)SAR based systems thereby helping the process of hazard-based regulatory assessments of chemicals.  相似文献   

9.
Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.  相似文献   

10.
A stepwise approach for determining the model applicability domain is proposed. Four stages are applied to account for the diversity and complexity of the current SAR/QSAR models, reflecting their mechanistic rationality (including metabolic activation of chemicals) and transparency. General parametric requirements are imposed in the first stage, specifying in the domain only those chemicals that fall in the range of variation of the physicochemical properties of the chemicals in the training set. The second stage defines the structural similarity between chemicals that are correctly predicted by the model. The structural neighborhood of atom-centered fragments is used to determine this similarity. The third stage in defining the domain is based on a mechanistic understanding of the modeled phenomenon. Here, the model domain combines the reliability of specific reactive groups hypothesized to cause the effect and the domain of explanatory variables determining the parametric requirements in order for functional groups to elicit their reactivity. Finally, the reliability of simulated metabolism (metabolites, pathways, and maps) is taken into account in assessing the reliability of predictions, if metabolic activation of chemicals is a part of the (Q)SAR model. Some of the stages of the proposed approach for defining the model domain can be eliminated depending on the availability and quality of the experimental data used to derive the model, the specificity of (Q)SARs, and the goals of their ultimate application. The performance of the proposed definition of the model domain is tested using several examples of (Q)SARs that have been externally validated, including models for predicting acute toxicity, skin sensitization, and biodegradation. The results clearly showed that credibility in predictions of QSAR models for chemicals belonging to their domain is much higher than for chemicals outside this domain.  相似文献   

11.
Development of accurate quantitative structure–activity relationship (QSAR) models requires the availability of high quality validated data. International regulations such as REACH in Europe will now accept (Q)SAR-based evaluations for risk assessment. The number of toxicity datasets available for those wishing to share knowledge, or to use for data mining and modelling, is continually expanding. The challenge is the current use of a multitude of different data formats. The issues of comparing or combining disparate data apply both to public and proprietary sources. The ToxML project addresses the need for a common data exchange standard that allows the representation and communication of these data in a well-structured electronic format. It is an open standard based on Extensible Markup Language (XML). Supporting information for overall toxicity endpoint data can be included within ToxML files. This makes it possible to assess the quality and detail of the data used in a model. The data file model allows the aggregation of experimental data to the compound level in the detail needed to support (Q)SAR work. The standard is published on a website together with tools to view, edit and download it.  相似文献   

12.
To comply with the REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) regulations, the generation of chronic fish toxicity data is required for chemicals produced or imported within or into the EU in quantities greater than 100 tonnes per year. This comes at a great cost to industry and consumers alike and requires the sacrifice of many vertebrates. In acknowledgment of these issues the REACH regulations encourage the use of non-testing methods (NTM). These include read-across, weight-of-evidence and QSAR (quantitative structure–activity relationship) techniques. There are many QSAR tools available to generate predictive values for a number of physico-chemical properties, as well as human and environmental health end points; however, close analysis of the currently available chronic fish models identified room for improvement in both the selection of data used and in its application in model creation. In light of this a model was developed using only sub-lethal no-observed-effect concentration (NOEC) end-point data according to best practice QSAR development. Only the lowest value was taken for each compound, in line with the conservative approach taken by the European Chemicals Agency (ECHA). The model developed meets the Organisation for Economic Co-operation and Development (OECD) principles, has strong internal and external validation statistics, and can reliably predict sub-lethal chronic NOEC values for fish within its defined applicability domain.  相似文献   

13.
14.
Humans are exposed to thousands of environmental chemicals for which no developmental toxicity information is available. Structure-activity relationships (SARs) are models that could be used to efficiently predict the biological activity of potential developmental toxicants. However, at this time, no adequate SAR models of developmental toxicity are available for risk assessment. In the present study, a new developmental database was compiled by combining toxicity information from the Teratogen Information System (TERIS) and the Food and Drug Administration (FDA) guidelines. We implemented a decision tree modeling procedure, using Classification and Regression Tree software and a model ensemble approach termed bagging. We then assessed the empirical distributions of the prediction accuracy measures of the single and ensemble-based models, achieved by repeating our modeling experiment many times by repeated random partitioning of the working database. The decision tree developmental SAR models exhibited modest prediction accuracy. Bagging tended to enhance the accuracy of prediction. Also, the model ensemble approach reduced the variability of prediction measures compared to the single model approach. Further research with data derived from animal species- and endpoint-specific components of an extended and refined FDA/TERIS database has the potential to derive SAR models that would be useful in the developmental risk assessment of the thousands of untested chemicals.  相似文献   

15.
16.
17.

Humans are exposed to thousands of environmental chemicals for which no developmental toxicity information is available. Structure-activity relationships (SARs) are models that could be used to efficiently predict the biological activity of potential developmental toxicants. However, at this time, no adequate SAR models of developmental toxicity are available for risk assessment. In the present study, a new developmental database was compiled by combining toxicity information from the Teratogen Information System (TERIS) and the Food and Drug Administration (FDA) guidelines. We implemented a decision tree modeling procedure, using Classification and Regression Tree software and a model ensemble approach termed bagging. We then assessed the empirical distributions of the prediction accuracy measures of the single and ensemble-based models, achieved by repeating our modeling experiment many times by repeated random partitioning of the working database. The decision tree developmental SAR models exhibited modest prediction accuracy. Bagging tended to enhance the accuracy of prediction. Also, the model ensemble approach reduced the variability of prediction measures compared to the single model approach. Further research with data derived from animal species- and endpoint-specific components of an extended and refined FDA/TERIS database has the potential to derive SAR models that would be useful in the developmental risk assessment of the thousands of untested chemicals.  相似文献   

18.

Background

The new REACH legislation requires assessment of a large number of chemicals in the European market for several endpoints. Developmental toxicity is one of the most difficult endpoints to assess, on account of the complexity, length and costs of experiments. Following the encouragement of QSAR (in silico) methods provided in the REACH itself, the CAESAR project has developed several models.

Results

Two QSAR models for developmental toxicity have been developed, using different statistical/mathematical methods. Both models performed well. The first makes a classification based on a random forest algorithm, while the second is based on an adaptive fuzzy partition algorithm. The first model has been implemented and inserted into the CAESAR on-line application, which is java-based software that allows everyone to freely use the models.

Conclusions

The CAESAR QSAR models have been developed with the aim to minimize false negatives in order to make them more usable for REACH. The CAESAR on-line application ensures that both industry and regulators can easily access and use the developmental toxicity model (as well as the models for the other four endpoints).
  相似文献   

19.
20.
A general review is presented of the roles of QSARs and mass balance models as tools for assessing the environmental fate and effects of chemicals of commerce. It is argued that all such chemicals must be assessed using a consistent and transparent methodology that uses chemical property data derived from QSARs, or experimental determinations when possible and applies evaluative or region-specific environmental models. These data and models enable an assessment to be made of the key chemical features of persistence, bioaccumulation, potential for long-range transport and toxicity. The other key feature is quantity used or discharged to the environment. A taxonomy of environmental models is presented in which it is suggested that rather than develop a single comprehensive model, the aim should be to establish a set of coordinated and consistent models treating evaluative and real environmental systems at a variety of scales from local to global and including food web models, organism-specific models and human exposure and pharmacokinetic models. The concentrations derived from these models can then be compared with levels judged to be of toxic significance. A brief account is given of perceived QSAR needs in terms of partitioning, reactivity, transport and toxicity data to support these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号