首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abstract

We provide a modified augmented Lagrange method coupled with a Tikhonov regularization for solving ill-posed state constrained elliptic optimal control problems with sparse controls. We consider a linear quadratic optimal control problem without any additional L2 regularization terms. The sparsity is guaranteed by an additional L1 term. Here, the modification of the classical augmented Lagrange method guarantees us uniform boundedness of the multiplier that corresponds to the state constraints. We present a coupling between the regularization parameter introduced by the Tikhonov regularization and the penalty parameter from the augmented Lagrange method, which allows us to prove strong convergence of the controls and their corresponding states. Moreover, convergence results proving the weak convergence of the adjoint state and weak*-convergence of the multiplier are provided. Finally, we demonstrate our method in several numerical examples.  相似文献   

2.
This paper applies the Moreau–Yosida regularization to a convex expected residual minimization (ERM) formulation for a class of stochastic linear variational inequalities. To have the convexity of the corresponding sample average approximation (SAA) problem, we adopt the Tikhonov regularization. We show that any cluster point of minimizers of the Tikhonov regularization for the SAA problem is a minimizer of the ERM formulation with probability one as the sample size goes to infinity and the Tikhonov regularization parameter goes to zero. Moreover, we prove that the minimizer is the least \(l_2\) -norm solution of the ERM formulation. We also prove the semismoothness of the gradient of the Moreau–Yosida and Tikhonov regularizations for the SAA problem.  相似文献   

3.
In this study we prove a stability estimate for an inverse heat source problem in the n-dimensional case. We present a revised generalized Tikhonov regularization and obtain an error estimate. Numerical experiments for the one-dimensional and two-dimensional cases show that the revised generalized Tikhonov regularization works well.  相似文献   

4.
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of the Moore-Penrose pseudoinverse of AA T as weighting matrix. Properties of this regularization method are discussed. Numerical examples illustrate that the proposed scheme for a suitable fractional power may give approximate solutions of higher quality than standard Tikhonov regularization.  相似文献   

5.
This paper is concerned with the image deconvolution problem. For the basic model, where the convolution matrix can be diagonalized by discrete Fourier transform, the Tikhonov regularization method is computationally attractive since the associated linear system can be easily solved by fast Fourier transforms. On the other hand, the provided solutions are usually oversmoothed and other regularization terms are often employed to improve the quality of the restoration. Of course, this weighs down on the computational cost of the regularization method. Starting from the fact that images have sparse representations in the Fourier and wavelet domains, many deconvolution methods have been recently proposed with the aim of minimizing the ?1-norm of these transformed coefficients. This paper uses the iteratively reweighted least squares strategy to introduce a diagonal weighting matrix in the Fourier domain. The resulting linear system is diagonal and hence the regularization parameter can be easily estimated, for instance by the generalized cross validation. The method benefits from a proper initial approximation that can be the observed image or the Tikhonov approximation. Therefore, embedding this method in an outer iteration may yield further improvement of the solution. Finally, since some properties of the observed image, like continuity or sparsity, are obviously changed when working in the Fourier domain, we introduce a filtering factor which keeps unchanged the large singular values and preserves the jumps in the Fourier coefficients related to the low frequencies. Numerical examples are given in order to show the effectiveness of the proposed method.  相似文献   

6.
We derive strongly convergent algorithms to solve inverse problems involving elastic-net regularization. Moreover, using functional analysis techniques, we provide a rigorous study of the asymptotic properties of the regularized solutions that allows to cast in a unified framework ?1, elastic-net and classical Tikhonov regularization.  相似文献   

7.
We construct with the aid of regularizing filters a new class of improved regularization methods, called modified Tikhonov regularization (MTR), for solving ill-posed linear operator equations. Regularizing properties and asymptotic order of the regularized solutions are analyzed in the presence of noisy data and perturbation error in the operator. With some accurate estimates in the solution errors, optimal convergence order of the regularized solutions is obtained by a priori choice of the regularization parameter. Furthermore, numerical results are given for several ill-posed integral equations, which not only roughly coincide with the theoretical results but also show that MTR can be more accurate than ordinary Tikhonov regularization (OTR).  相似文献   

8.
In this paper we consider nonlinear ill-posed problems F(x) = y 0, where x and y 0 are elements of Hilbert spaces X and Y, respectively. We solve these problems by Tikhonov regularization in a Hilbert scale. This means that the regularizing norm is stronger than the norm in X. Smoothness conditions are given that guarantee convergence rates with respect to the data noise in the original norm in X. We also propose a variant of Tikhonov regularization that yields these rates without needing the knowledge of the smoothness conditions. In this variant F is allowed to be known only approximately and X can be approximated by a finite-dimensional subspace. Finally, we illustrate the required conditions for a simple parameter estimation problem for regularization in Sobolev spaces.  相似文献   

9.
We study the Tikhonov regularization for perturbed inclusions of the form T(x) ' y*{T(x) \ni y^*} where T is a set-valued mapping defined on a Banach space that enjoys metric regularity properties and y* is an element near 0. We investigate the case when T is metrically regular and strongly regular and we show the existence of both a solution x* to the perturbed inclusion and a Tikhonov sequence which converges to x*. Finally, we show that the Tikhonov sequences associated to the perturbed problem inherit the regularity properties of the inverse of T.  相似文献   

10.
Although the residual method, or constrained regularization, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals.We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on Lp-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.  相似文献   

11.
In this paper, we investigate a problem of the identification of an unknown source on Poisson equation from some fixed location. A conditional stability estimate for an inverse heat source problem is proved. We show that such a problem is mildly ill‐posed and further present two Tikhonov‐type regularization methods (a generalized Tikhonov regularization method and a simplified generalized Tikhonov regularization method) to deal with this problem. Convergence estimates are presented under the a priori choice of the regularization parameter. Numerical results are presented to illustrate the accuracy and efficiency of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.  相似文献   

13.
One of the most successful methods for solving the least‐squares problem minxAx?b2 with a highly ill‐conditioned or rank deficient coefficient matrix A is the method of Tikhonov regularization. In this paper, we derive the normwise, mixed and componentwise condition numbers and componentwise perturbation bounds for the Tikhonov regularization. Our results are sharper than the known results. Some numerical examples are given to illustrate our results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates. In memory of Gene H. Golub. This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.  相似文献   

15.
Motivated by the theoretical and practical results in compressed sensing, efforts have been undertaken by the inverse problems community to derive analogous results, for instance linear convergence rates, for Tikhonov regularization with ℓ1‐penalty term for the solution of ill‐posed equations. Conceptually, the main difference between these two fields is that regularization in general is an uncon strained optimization problem, while in compressed sensing a constrained one is used. Since the two methods have been developed in two different communities, the theoretical approaches to them appear to be rather different: In compressed sensing, the restricted isometry property seems to be central for proving linear convergence rates, whereas in regularization theory range or source conditions are imposed. The paper gives a common meaning to the seemingly different conditions and puts them into perspective with the conditions from the respective other community. A particularly important observation is that the range condition together with an injectivity condition is weaker than the restricted isometry property. Under the weaker conditions, linear convergence rates can be proven for compressed sensing and for Tikhonov regularization. Thus existing results from the literature can be improved based on a unified analysis. In particular, the range condition is shown to be the weakest possible condition that permits the derivation of linear convergence rates for Tikhonov regularization with a priori parameter choice. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Tikhonov regularization is one of the most popular approaches to solving linear discrete ill‐posed problems. The choice of the regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This paper provides an analysis of iterated Tikhonov regularization with a regularization matrix different from the identity. Computed examples illustrate the performance of this method.  相似文献   

17.
反问题是现在数学物理研究中的一个热点问题,而反问题求解面临的一个本质性困难是不适定性。求解不适定问题的普遍方法是:用与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法.如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容.当前,最为流行的正则化方法有基于变分原理的Tikhonov正则化及其改进方法,此类方法是求解不适定问题的较为有效的方法,在各类反问题的研究中被广泛采用,并得到深入研究.  相似文献   

18.
We consider the problem of approximate solution of severely ill-posed problems with perturbed right-hand sides. The approximation properties of a finite-dimensional version of the Tikhonov regularization in the combination with the a posteriori choice of a regularization parameter by means of the balancing principle are analyzed. It is shown that this approach provides an optimal order of accuracy. The efficiency of the theoretical results is checked by comparison with the earlier known methods.  相似文献   

19.
We study the convergence of a diagonal process for minimizing a closed proper convex function f, in which a proximal point iteration is applied to a sequence of functions approximating f. We prove that, when the approximation is sufficiently fast, and also when it is sufficiently slow, the sequence generated by the method converges toward a minimizer of f. Comparison to previous work is provided through examples in penalty methods for linear programming and Tikhonov regularization.  相似文献   

20.
In this article we discuss a regularization of semi-discrete ill-posed problem appearing as a result of application of a collocation method to Fredholm integral equation of the first kind. In this context we analyse Tikhonov regularization in Sobolev scales and prove error bounds under general source conditions. Moreover, we study an a posteriori regularization parameter choice by means of the balancing principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号