首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The grafting of poly(organophosphazenes) onto carbon black surface by the reaction of poly(dichlorophosphazene) (PDCP) with carbon black having sodium phenoxide groups was investigated. PDCP was prepared by the ring-opening polymerization of hexachlorocyclotriphos-phazene in solution using sulfamic acid as a catalyst. The introduction of sodium phenoxide groups onto carbon black was achieved by treatment of phenolic hydroxyl groups on the surface with sodium hydroxide in methanol. Poly(diphenoxyphosphazene) (PDPP) was successfully grafted onto carbon black by the reaction of PDCP with sodium phenoxide groups introduced onto the surface followed by the replacement of chlorine atoms in PDCP with phenoxy groups. The percentage of grafting onto carbon black increased to 206% at 30°C after 12 h. It was found that only 1.4% of sodium phenoxide groups on carbon black surface was used for the grafting of PDCP because of the blocking of the surface by grafted polymer chains. Poly(diaminophenylphosphazene) and poly-(diethoxyphosphazene) were also grafted onto carbon black surface by the treatment of PDCP-grafted carbon black with aniline and sodium ethoxide, respectively. Poly(organophosphazenes)-grafted carbon blacks produced stable colloidal dispersions in good solvents for grafted polymers. Furthermore, thermogravimetric analysis indicated that poly-(organophosphazenes)-grafted carbon blacks were stable in air about 300°C.  相似文献   

2.
Ball-milling of N660 carbon black and graphite causes a deep activation of its surface activity which can be measured by a significant increase in the bound rubber level and in the amount of grafted rubber in comparison to the pristine untreated samples. The bound rubber measurement has been done also on a natural rubber masterbatch filled with extracted fullerene carbon black (EFCB). Also in this case extremely high levels of rubber grafting have been achieved in comparison to pure untreated graphite. It is discussed and demonstrated that the fullerene-like nanostructures in carbon blacks play a key role in the formation of bound rubber phenomenon and in grafting natural rubber on carbon black surface.  相似文献   

3.
The radical graft polymerization of vinyl monomers from carbon black initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto carbon black surface was achieved by three methods: the reaction of 2,2′-azobis[2-(2-imidazolin-2-yl)propane] (AIP) with (1) epoxide groups, which were introduced by the reaction of carbon black with chlorometh-yloxirane; (2) acyl chloride groups, which were introduced by the reaction of carboxyl groups on the surface with thionyl chloride; and (3) 3-chloroformyl-1-cyano-1-methylpropyl groups, which were introduced by the reaction of carbon black with 4,4′-azobis(4-cyanovaleric acid) and then thionyl chloride. The amount of azo groups introduced onto the surface by the above methods was determined to be 0.07-0.19 mmol/g. The graft polymerization of methyl methacrylate was found to be initiated by azo groups introduced onto the carbon black surface. During the polymerization, poly(methyl methacrylate) was effectively grafted onto carbon black through propagation of the polymer from the radical produced on the surface by the decomposition of the azo groups. The percentage of grafting using carbon black having azo groups introduced by method 1 increased to 40%. It was also found that the graft polymerization of several vinyl monomers such as styrene, acrylonitrile, and acrylic acid was initiated by the azo groups introduced onto the surface and the corresponding polymer was effectively grafted onto the surface. Furthermore, the effect of the amount of carbon black having azo groups on the graft polymerization was investigated.  相似文献   

4.
Aromatic poly(amide-imide) with terminal isocyanate groups (PAINCO) was prepared by the polycondensation of trimellitic anhydride and a slight excess of 4,4′-diphenylmethane diisocyanate in N-methyl-2-pyrrolidone (NMP) at 160°C for 20 h. PAI was effectively grafted onto the surface by the reaction of PAI-NCO with carbon black: the percentage of grafting onto FW 200 and Neospectra II was determined to be 41.2 and 39.5%, respectively. When the carboxyl and phenolic hydroxyl groups on carbon black were blocked by treatment with diazomethane, the grafting of PAI-NCO onto the treated carbon black does not proceed. Therefore, it is concluded that PAI-NCO reacts with the carboxyl and phenolic hydroxyl groups on carbon black and PAI is grafted through amide and urethane bonds, respectively. The reaction of PAI-NCO with carbon black was accelerated by the addition of amines as catalyst and by raising of the reaction temperature. Thermogravimetric analysis indicated that PAI-grafted carbon black was stable in air up to about 300°C. The PAI-grafted carbon black was found to give a stable colloidal dispersion in NMP.  相似文献   

5.
Abstract

A cation-exchange resin (a crosslinked polymer carrying carboxyl groups) was used as a model compound for carbon black, and the grafting of several polymers to the resin was investigated. Reaction of acyl chloride groups that had been placed on the ion-exchange resin with polymers having hydroxyl or amino groups, such as polypropylene glycol, polyethylene glycol, polybutadiene glycol, polyvinyl alcohol, silicone diol, silicone diamine, and polyethyleneimine, resulted in grafting to the ion-exchange resin. In further experiments, primary amino groups were placed on the cation-exchange resin by reaction of acyl chloride groups with ethylenediamine. It was found that ring-opening polymerization of γmethyl L-glutamate N-carboxyanhydride is initiated by the amino groups on the resin, and polypeptide was grafted from the cation-exchange resin. Therefore, the reactivity of carboxyl groups on the resin was found to be similar to that on carbon black. However, carboxyl groups on the resin failed to initiate the cationic polymerization of vinyl monomers, in contrast to those on carbon black. This suggested that the acidity of carboxyl groups on carbon black is greater than on the cation-exchange resin.  相似文献   

6.
The radical graft polymerization of vinyl monomers onto carbon black initiated by a redox system consisting of ceric ion and carbon black having alcoholic hydroxyl groups was investigated. The introduction of alcoholic hydroxyl groups onto the carbon black surface was achieved by the reaction of carbon black with alcoholic hydroxyl radicals, formed by the reaction of alcohol with benzoyl peroxide. The rate of the polymerization of acrylamide (AAm) initiated by the redox system was found to increase in the following order of hydroxyl groups: 1-hydroxyoctyl < 1-hydroxypropyl < 1-hydroxyethyl < hydroxymethyl < 1-hydroxy-1-methylethyl. In the redox polymerization, poly-AAm was effectively grafted onto carbon black by propagation of the polymer from the radical formed by the reaction of ceric ions with the alcoholic hydroxy groups. The percentage of grafting increased with increasing conversion. By use of this redox system, poly(acrylic acid), polyacrylonitrile, and poly(N-vinyl-2-pyrrolidone) could be grafted onto carbon black, but poly(methyl methacrylate) and polystyrene could not be so grafted. The graft polymerization of AAm by use of a redox system consisting of ceric ion and PVA-grafted carbon black was also investigated.  相似文献   

7.
Abstract

The cationic graft polymerization of vinyl monomers onto a carbon whisker, vapor-grown carbon fiber, initiated by acylium perchlorate groups introduced onto the surface, was investigated. The introduction of acylium perchlorate groups onto a carbon whisker was achieved by the treatment of a carbon whisker having acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride, with silver perchlorate in nitrobenzene. It was found that the cationic polymerization of vinyl monomers, such as styrene, indene, N-vinyl-2-pyrrolidone, and n-butyl vinyl ether, is initiated by acylium perchlorate groups on a carbon whisker. In the polymerization, the corresponding vinyl polymers were grafted onto a carbon-whisker surface based on the propagation of polymer from the surface: the percentage of grafting of polystyrene and polyindene reached 42.5 and 100.3%, respectively. The percentage of polystyrene grafting decreased with increasing polymerization temperature because of preferential chain transfer reactions at higher temperatures. Polymer-grafted carbon whisker gave a stable colloidal dispersion in a good solvent for grafted polymer.  相似文献   

8.
超声引发自由基聚合制备聚苯乙烯磺酸钠接枝炭黑   总被引:1,自引:0,他引:1  
通过在超声环境下,单体苯乙烯磺酸钠发生自由基聚合,生成的聚合物长链自由基被炭黑表面捕获,制备聚合物接枝炭黑.借助红外光谱、热重、粒度、透射电镜和zeta电位分析对该接枝炭黑进行表征.同时研究超声条件对接枝率的影响.结果表明,单体聚合并接枝到炭黑表面,同时炭黑的附聚体和一些大的聚集体结构被超声破碎,平均粒径大为减小;在300W超声波输出功率下,反应1h后,接枝率达到12.8%并趋于稳定.由于接枝分子链上磺酸基的存在,接枝炭黑在水中的分散稳定性显著改善.  相似文献   

9.
To improve the surface of carbon fiber, the grafting reaction of copolymer containing vinyl ferrocene (VFE) onto a carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with vinyl monomers, such as methyl methacrylate (MMA) and styrene, using 2,2′‐azobisisobutyronitrile as an initiator. By heating the carbon fiber with poly(VFE‐co‐MMA) (number‐average molecular weight: 2.1 × 104) in the presence of aluminum chloride and aluminum powder, the copolymer was grafted onto the surface. The percentage of grafting reached 46.1%. On the contrary, in the absence of aluminum chloride, no grafting of the copolymer was observed. Therefore, it is considered that the copolymer was grafted onto the carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber. The molar number of grafted polymer chain on the carbon‐fiber surface decreased with increasing molecular weight of poly(VFE‐co‐MMA) because the steric hindrance of grafted copolymer on the carbon‐fiber surface increases with increasing molecular weight of poly(VFE‐co‐MMA). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1868–1875, 2002  相似文献   

10.
A pyrolyzed ash containing about 50% carbon,named silicon carbon black(SiCB),was prepared by the anoxic pyrolysis of rice husk.Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA), Brunauer-Enunett-Teller(BET),transmission electron microscopy(TEM)and universal material testing machine were used to analyze the stress-strain relationship,Mullins effect and static viscoelastic properties of SiCB-filled vulcanized natural rubber(NR),and SiCB was compared with a commercially available semi-reinforcing fumace(SRF) carbon black.The results show that the vulcanized natural rubber filled with SiCB had similar reinforcing properties to those of that filled with traditional SRF,but obvious differences between them exist in stress-strain properties and stress softening resistance.We tried to discuss the related phenomena with the aid of the modified two-layer theory. And it is successfully predicted and verified that SiCB has good compression resistance and obvious stress relaxation advantages in compression stress relaxation.  相似文献   

11.
以稻壳基二氧化硅/碳复合材料(SiCB)作为天然橡胶(NR)的补强填料, 采用表面化学改性的方法将天然乳胶(NRL)接枝到SiCB表面, 改善其与NR基体的相容性. 研究了不同处理方法对接枝NRL效率的影响, 以及填料填入NR后对硫化橡胶力学性能的影响. 结果表明, 经过硝酸和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(γ-MPTMS)预处理, NRL能高效接枝在SiCB表面, 得到的样品SiCBMR10比未处理的SiCBP有更强的补强能力. 硫化胶NR/SiCBMR10的拉伸强度、 300%定伸和撕裂强度较NR/SiCBP分别提高了61.06%, 27.15%和15.90%, 与传统炭黑产品N774填充的硫化胶NR/N774的力学性能相近. 经过NRL接枝改性的SiCBMR10具有替代商业炭黑的应用前景.  相似文献   

12.
The grafting of polystyrene with controlled molecular weight and narrow molecular weight distribution onto the carbon black surface through the trapping of polymer radicals formed by the thermal dissociation of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-terminated polystyrene (PSt-TEMPO) by the carbon black surface was investigated. PSt-TEMPO was prepared by living radical polymerization of St with the benzoyl peroxide/TEMPO system. When PSt having no terminal TEMPO moiety was heated with carbon black, no grafting of PSt onto the surface was observed. On the contrary, by the heating of PSt-TEMPO with carbon black in m-xylene at 125°C, PSt with controlled molecular weight and narrow molecular weight distribution was grafted onto the surface: the percentage grafting of PSt (Mn = 3.2 × 103;Mw/Mn = 1.07) onto furnace black was determined to be 16.0%. On the basis of the above results, it is concluded that PSt radicals formed by the thermal dissociation of the C ON bond between PSt and TEMPO are trapped by polycondensed aromatic rings of carbon black. The mole number of grafted PSt chains on the carbon black surface decreased with increasing molecular weight of PSt-TEMPO. PSt-grafted carbon black gave a stable colloidal dispersion in THF. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3165–3172, 1998  相似文献   

13.
从琴琴  廖双泉  杨晓红  张哲  谢贵水 《合成化学》2012,20(4):458-461,478
以天然橡胶(NR)为原料,经环氧化反应在NR分子链上引入环氧基制得环氧化天然橡胶(1);1经裂解反应合成了端羰基液体天然橡胶(2);对2进行改性得到端羟基液体天然橡胶(3),其结构经1H NMR和IR表征。探讨了反应温度、时间、氧化剂用量和环氧化程度对2的黏均分子量(M珚η)的影响。结果表明,延长反应时间、升高温度和增加氧化剂用量均可有效降低2的M珚η;1的环氧化程度对2的M珚η具有决定性作用,可通过调节环氧化程度实现2的M珚η的可控性。  相似文献   

14.
High conversion and high grafting efficiency attained by graft copolymerization of styrene onto deproteinized natural rubber (DPNR) was investigated with respect to the molecular weight of grafted polystyrene. The graft copolymerization was performed with tert-butyl hydroperoxide/tetraethylenepentamine as an initiator after deproteinization of natural rubber with urea. Grafted polystyrene was isolated from the resulting graft copolymer by ozonolysis reaction. After the ozonolysis of the graft copolymer of DPNR and polystyrene (DPNR-g-PS), the molecular weight of grafted polystyrene was determined by size exclusion chromatography. Effects of initiator and monomer concentrations were investigated with respect to the molecular weight of the grafted polystyrene, which was found to depend on not only the number of active site generated on the rubber particle but also the feed of styrene. Deactivation and chain transfer of the active sites were attributed to effective amount of styrene used for the graft copolymerization.  相似文献   

15.
Carbon fiber (CF) was subjected to oxidation and acyl chlorination, resulting in CF functionalized with acyl chloride (CF-COCl). The block copolymer polystyrene-b-poly (2-hydroxyethyl methacrylate) (PSt-b-PHEMA) was synthesized by atom-transfer radical polymerization (ATRP). According to the reaction between hydroxyl groups of block copolymer and acyl chloride groups on CF, the block copolymer was successfully grafted onto the surface of CF. Fourier-transform infrared spectra (FTIR), Gel permeation chromatography (GPC) were used to determine the chemical structure and molecular weight of block copolymer; Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR), Scanning electron microscopy (SEM) and thermal gravimetric analyses (TGA) were used to determine the chemical property and structure of grafted CF.  相似文献   

16.
The radical graft polymerization of vinyl monomers, such as styrene and methyl methacrylate, initiated by azo groups introduced onto silica nanoparticle and carbon black surfaces in room temperature ionic liquid (IL) were investigated. In this work, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C4mim][PF6]) was used as IL. The percentage of polystyrene and poly(methyl methacrylate) grafting onto silica nanoparticle and carbon black increased with increasing reaction time. The percentage of grafting in IL was much larger than that in 1,4‐dioxane. The molecular weight of polystyrene grafted onto the silica surface in IL was almost equal to that in 1,4‐dioxane. The result indicates that the amount of grafted polystyrene in IL is five times that in 1,4‐dioxane. This may be due to the fact that lifetime of the surface radical formed by the group of azo is prolonged because of high viscosity of IL. Therefore, the surface azo groups were effectively used as initiating sites for the graft polymerization. In addition, the reduction of waste solvent was achieved by use of IL as reaction solvent, because unreacted monomer could be removed under vacuum after the reaction and the reuse of IL was easily achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1143–1149, 2007  相似文献   

17.
Although isocyanate group (NCO) introduced onto carbon black surface was inactivated rapidly upon storage, it could be stabilized by masking the NCO group with active hydrogen compounds such as acetylacetone, diethyl malonate, and sodium hydrogensulfite. Upon heating these carbon blacks having masked NCO group at 150°C, the NCO group was regenerated on carbon black by the decomposition of the masked NCO group. On the other hand, acyl azide (CON3) group introduced onto carbon black was stable at below 20°C, but readily decomposed to NCO group by heating. By means of the reaction of NCO group on carbon black with functional polymers having hydroxyl, amino, and carboxyl group, these polymers were effectively grafted onto carbon black surface. When carbon black having CON3 group was used as reactive carbon black, the grafting ratio of diol-type polyethylene glycol (Mn = 8.2 × 103), polyethyleneimine (Mn = 2.0 × 104), polyvinyl alcohol (Mn = 2.2 × 104), and bifunctional carboxyl-terminated polystyrene (Mn = 1.1 × 105) was determined to be 29.7, 81.7, 32.2, and 50.4%, respectively. The number of grafted polymer chain decreases with an increase in molecular weight of the polymers, because the shielding effect of NCO group by grafted polymer chain is enhanced with an increase in molecular weight of the polymer.  相似文献   

18.
The cationic ring-opening polymerization of trioxane and 1,3-dioxolane was found to be initiated by CO+CIO4? groups on a carbon black surface, which were introduced by the reaction of COCI groups with AgCIO4. The activation energy of the ring-opening polymerization of trioxane was estimated to be 15.5 kcal/mol. In the polymerization system, poly(oxymethylene) and poly(1,3-dioxolane) formed were effectively grafted onto carbon black depending upon the propagation of these polymers from the carbon black surface; for instance, the grafting ratio of poly(oxymethylene) onto carbon black increased with an increase in conversion and went up to about 180%. Although the grafted chain of poly(oxymethylene) was subject to stepwise thermal depolymerization from the chain ends, the thermal stability of poly(oxymethylene)-grafted carbon black was improved by acetylation of hemiformal end groups. The molecular weight of ungrafted poly(oxymethylene) formed in the polymerization was determined to be 1.8–2.0 × 104. Furthermore, the copolymerization of trioxane with 1,3-dioxolane, styrene, and other comonomers initiated by CO+CIO4? groups and the thermal stability of these acetal copolymer-grafted carbon black were investigated.  相似文献   

19.
天然橡胶原位接枝炭黑的分散性研究   总被引:1,自引:0,他引:1  
采用原位固相接枝方法,使在高温和强剪切作用下降解的天然橡胶接枝到炭黑表面.采用透射电镜(TEM)、原子力显微镜(AFM)等方法观察了接枝前后的炭黑粒子形貌变化,发现未接枝炭黑以微米级的附聚体形式存在,而由于炭黑聚集体被强剪切力部分破坏,接枝炭黑的聚集程度明显减弱,粒子的尺寸减小.采用激光光散射粒度仪对接枝前后炭黑的粒度进行分析,接枝炭黑的体积平均粒径为164 nm,远小于测得的原炭黑的粒径797 nm.采用沉降法、透光率法及zeta电位测量研究了接枝改性对炭黑在溶剂中的分散性及分散稳定性的影响,结果表明,接枝炭黑在接枝分子的溶剂中的分散性变好,分散稳定性提高.  相似文献   

20.
The degree of compatibilization between natural rubber (NR) and acrylonitrile‐butadiene rubber (NBR) was investigated by two different methods. NBR was chemically modified with maleic anhydride in a screw twin mixer with and without reaction initiator, benzoyl peroxide. Also, the effects of molecular weight of liquid natural rubber (LNR) as a compatibilizer were studied. The degree of compatibilization between NBR and NR is determined indirectly through measurements of mechanical properties and impact resistance. The maleic anhydride and benzoyl peroxide concentrations influence the mechanical properties and impact resistance of the blends. Also, the mechanical properties of the blends showed that the molecular weight of LNR played an important role in determing their performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号