首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to obtaining thermoset organotin polymers, which permits control of crosslinking site distribution and, through it, a better control of properties of organotin antifouling polymers, is reported. Tri-n-butyltin acrylate and tri-n-butyltin methacrylate monomers were prepared and copolymerized, by the solution polymerization method with the use of free-radical initiators, with several vinyl monomers containing either an epoxy or a hydroxyl functional group. The reactivity ratios were determined for six pairs of monomers by using the analytical YBR method to solve the differential form of the copolymer equation. For copolymerization of tri-n-butyltin acrylate (M1) with glycidyl acrylate (M2), these reactivity ratios were n = 0.295 ± 0.053, r2 = 1.409 ± 0.103; with glycidyl methacrylate (M2) they were r1 = 0.344 ± 0.201, r2 = 4.290 ± 0.273; and with N-methylolacrylamide (M2) they were r1 = 0.977 ± 0.087, r2 = 1.258 ± 0.038. Similarly, for the copolymerization of tri-n-butyltin methacrylate (Mi) with glycidyl aery late (M2) these reactivity ratios were r1 = 1.356 ± 0.157, r2 = 0.367 ± 0.086; with glycidyl methacrylate (M2) they were r1 = 0.754 ± 0.128, r2 = 0.794 ± 0.135; and with N-methylolacrylamide (M2) they were r1 ?4.230 ± 0.658, r2 = 0.381 ± 0.074. Even though the magnitude of error in determination of reactivity ratios was small, it was not found possible to assign consistent Q,e values to either of the organotin monomers for all of its copolymerizations. Therefore, Q,e values were obtained by averaging all Q,e values found for the particular monomer, and these were Q = 0.852, e = 0.197 for the tri-n-butyltin methacrylate monomer; and Q = 0.235, e = 0.401 for the tri-n-butyltin acrylate monomer. Since the reactivity ratios indicate the distribution of the units of a particular monomer in the polymer chain, the measured values are discussed in relation to the selection of a suitable copolymer which, when cross-linked with appropriate crosslinking agents through functional groups, would give thermoset organotin coatings with an optimal balance of mechanical and antifouling properties.  相似文献   

2.
Free radical-initiated copolymerization of diethyl vinyl phosphate (DEVPA) with vinyl acetate (VAc) and acrylonitrile (AN) was studied. The monomer reactivity ratios for the monomer pairs, determined at 60°C using benzoyl peroxide as an initiator, are: r1(VAc) = 0.95, r2(DEVPA) = 0.93; r1(AN) = 6.6, r2(DEVPA) = 0.049. The values of the Alfrey-Price constants, Q and e, for DEVPA were calculated to be 0.025 and 0.13, respectively, from the VAc system, and 0.026 and 0.14, respectively, from the AN/DEVPA pair. These results indicate that the general reactivity of DEVPA is almost the same as that of VAc and that the diethylphosphate group is a stronger electron-attracting group than the acetoxy group. The intrinsic viscosity and number-average molecular weight of copolymers decreased as their content of DEVPA units increased, indicating a high degree of chain transfer caused by DEVPA.  相似文献   

3.
The course of composition drift in copolymerization reactions is determined by reactivity ratios of the contributing monomers. Since polymer properties are directly correlated with the resulting chemical composition distribution, reactivity ratios are of paramount importance. Furthermore, obtaining correct reactivity ratios is a prerequisite for good model predictions. For vinyl acetate (VAc), vinyl 2,2-dimethyl-propanoate also known as vinyl pivalate (VPV), and vinyl 2-ethylhexanoate (V2EH), the reactivity ratios with methyl acrylate (MA) have been determined by means of low conversion bulk polymerization. The mol fraction of MA in the resulting copolymer was determined by 1H-NMR. Nonlinear optimization on the thus-obtained monomer feed–copolymer composition data resulted in the following sets of reactivity ratios: rMA = 6.9 ± 1.4 and rVAc = 0.013 ± 0.02; rMA = 5.5 ± 1.2 and rVPV = 0.017 ± 0.035; rMA = 6.9 ± 2.7 and rV2EH = 0.093 ± 0.23. As a result of the similar and overlapping reactivity data of the three methyl acrylate–vinyl ester monomer systems, for practical puposes these data can be described with one set of reactivity data. Nonlinear optimization of all monomer feed–copolymer composition data together resulted in rMA = 6.1 ± 0.6 and rVEst = 0.0087 ± 0.023. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
5.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

6.
The radical copolymerization of diallyl tartrate (DATa) (M1) with diallyl succinate (DASu), diallyl phthalate (DAP), allyl benzoate (ABz), vinyl acetate (VAc), or styrene (St) was investigated in order to disclose in more detail the characteristic hydroxyl group's effect observed in the homopolymerization of DATa. In the copolymerization with DASu or DAP as a typical diallyldicarboxylate, the dependence of the rate of copolymerization on monomer composition was different for different copolymerization systems and unusual values larger than unity for the product of monomer reactivity ratios, r1r2, were obtained. In the copolymerization with ABz or VAc (M2), the r1 and r2 values were estimated to be 1.50 and 0.64 for the DATa/ABz system and 0.76 and 2.34 for the DATa/VAc system, respectively; the product r1r2 for the latter copolymerization system was found again to be larger than unity. In the copolymerization with St, the largest effect due to DATa monomer of high polarity was observed. Solvent effects were tentatively examined to improve the copolymerizability of DATa. These results are discussed in terms of hydrogen-bonding ability of DATa.  相似文献   

7.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

8.
2-Hydroxypropyl methacrylate (2-HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the Yezrielev, Brokhina, and Raskin method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are r1 = 1.807 ± 0.032 and r2 = 0.245 ± 0.021; with BMA (M2) they are n = 2.378 ± 0.001 and r2 = 0.19 ± 0.01; and with EHMA the values are r1 = 4.370 ± 0.048 and r2 = 0.103 ± 0.006. Since reactivity ratios are the measure of distribution of monomer units in copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end-uses.  相似文献   

9.
The ethylene (M1)–vinyl acetate (M2) copolymerization at 62°C and 35 kg/cm2 with α,α′-azo-bisisobutyronitrile as initiator has been studied in four different solvents, viz., tert-butyl alcohol, isopropyl alcohol, benzene, and N,N-dimethylformamide. The experimental method used was based on frequent measurement of the composition of the reaction mixture throughout the copolymerization reaction by means of quantitative gas chromatographic analysis. Highly accurate monomer reactivity ratios have been calculated by means of the curve-fitting I procedure. The observed dependence of the r values on the nature of the solvent is surprisingly large and can be correlated with the volume changes (= excess volumes) observed on mixing vinyl acetate (VAc) with the relevant solvent. An increased hydrogen bonding or dipole–dipole interaction through the carbonyl moiety of the acetate side group of VAc, induces a decreased electron density on the vinyl group of VAc, which in turn leads to a decreased VAc reactivity. The differences among the overall rates of copolymerization in the various solvents can be interpreted in terms of a variable chain transfer to solvent and the rate of the subsequent reinitiation by the solvent radical. In the case of benzene, complex formation is believed to play an important part.  相似文献   

10.
The copolymerization of a highly fluorinated cyclic monomer, octafluorocyclopentene (OFCPE, M1), with ethyl vinyl ether (EVE, M2) was investigated with a radical initiator in bulk. Despite the poor homopolymerizability of each monomer, the copolymerization proceeded successfully, and the molecular weights of the copolymers reached up to more than 10,000. Incorporation of the OFCPE units into the copolymer led to an increase in the glass‐transition point. The copolymer composition was determined from 1H NMR spectra and elemental analysis data. The molar fraction of the OFCPE unit in the copolymer increased and approached but did not exceed 0.5. The monomer reactivity ratios were estimated by the Yamada–Itahashi–Otsu nonlinear least‐squares procedure as r1,OFCPE = ?0.008 ± 0.010 and r2,EVE = 0.192 ± 0.015. The reactivity ratios clearly suggest that the copolymerization proceeds alternatively in the case of an excessive feed of OFCPE. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1151–1156, 2002  相似文献   

11.
Two novel trifluorovinyl ether (TFVE) monomers were copolymerized with either ethyl vinyl ether (EVE) or vinyl acetate (VAc) in a redox‐initiated aqueous emulsion: 1‐(2‐phenoxyethoxy)‐1,2,2‐trifluoroethene (Ph‐TFVE) and 1‐[2‐(2‐ethoxyethoxy)ethoxy]‐1,2,2‐trifluoroethene (Et‐TFVE). Previous studies demonstrated a propensity for radical hydrogen abstraction from the oligoether pendant group during the homopolymerization of Et‐TFVE with continued propagation of the resulting radical, thereby providing the rationale to investigate the copolymerization of our new TFVEs with EVE or VAc. Reactivity ratios were estimated using the error‐in‐variables model from a series of bulk free radical copolymerizations of Ph‐TFVE with EVE or VAc. The reactivity ratios were rPh‐TFVE = 0.25 ± 0.07, rEVE = 0.016 ± 0.04; rPh‐TFVE = 0.034 ± 0.04, rVAc =0.89 ±0.08. Partial hydrolysis of polymers containing VAc to vinyl alcohol (VA) resulted in two terpolymers: poly(Ph‐TFVE‐co‐VAc‐co‐VA) and poly(Et‐TFVE‐co‐VAc‐co‐VA), respectively. We investigated the possibility of hydrogen abstraction from VAc during polymerization by comparing the molar mass before and after hydrolysis. Abstraction from VAc was not apparent during polymerization; however, abstraction from the oligoether pendant group of Et‐TFVE was again evident and was more significant for those copolymers having a greater fraction of Et‐TFVE in the monomer feed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1344–1354, 2000  相似文献   

12.
Copolymers of 2-sulfoethyl methacrylate, (SEM) were prepared with ethyl methacrylate, ethyl acrylate, vinylidene chloride, and styrene in 1,2-dimethoxyethane solution with N,N′-azobisisobutyronitrile as initiator. The monomer reactivity ratios with SEM (M1) were: vinylidene chloride, r1 = 3.6 ± 0.5, r2 = 0.22 ± 0.03; ethyl acrylate, r1 = 3.2 ± 0.6, r2 = 0.30 ± 0.05; ethyl methacrylate, r1 = 2.0 ± 0.4, r2 = 1.0 ± 0.1; styrene, r1 = 0.6 ± 0.2, r2 = 0.37 ± 0.03. The values of the copolymerization parameters calculated from the monomer reactivity ratios were e = +0.6 and Q = 1.4. Comparison of the monomer reactivities indicates that SEM is similar to ethyl methacrylate with regard to copolymerization reactivity in 1,2-dimethoxyethane solution. The sodium salt of 2-sulfoethyl methacrylate, SEM?Na, was copolymerized with 2-hydroxyethyl methacrylate (M2) in water solution. Reactivity ratios of r1 = 0.7 ± 0.1 and r2 = 1.6 ± 0.1 were obtained, indicating a lower reactivity of SEM?Na in water as compared to SEM in 1,2-dimethoxyethane. This decreased reactivity was attributed to greater ionic repulsion between reacting species in the aqueous medium.  相似文献   

13.
2-Hydroxypropyl methacrylate (2 HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the YBR method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are: r1=1.807 ± 0.032, r2=0.245 ± 0.021; with BMA (M2) they are r1=2.378 ± 0.001, r2=0.19 ± 0.01; and with EHMA the values are r1=4.370 ± 0.048, r2=0.103 ± 0.006. Since the reactivity ratios are the measure of distribution of monomer units in a copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end uses.  相似文献   

14.
Abstract

Radiation-induced polymerization in binary component systems of acrylonitrile-methacrylonitrile and acrylonitrile-vinyl acetate was studied at ?196°C. A mixture of two-component homopolymers was obtained from the acrylonitrile-methacrylonitrile system, which forms a eutectic mixture. When the mixture of acrylonitrile with vinyl acetate is cooled quickly from room temperature, a glassy state can be obtained. It was found that the copolymerization is possible in the glassy state at ?196°C, and the monomer reactivity ratios were determined as r 1 = 6.0 and r 2 = 0.2 (M 1 = acrylonitrile), which coincides with the reported values on the radical copolymerization at room temperature.  相似文献   

15.
The radical copolymerization of N,N-diallyl-N,N-dimethylammonium chloride (AMAC) (M1) with ethylene glycol vinyl ether (M2) in an aqueous medium proceeds at a high rate to afford random copolymers. The reactivity ratios equal to r 1 = 2.18 and r 2 = 0.01 indicate that AMAC is a more active comonomer. The overall reaction order in comonomers is 2.4, and the effective activation energy is 97.4 ± 2 kJ/mol. The monomer M1 enters into copolymerization by both of the double bonds with the formation of pyrrolidinium structures in the chain through the cyclization stage.  相似文献   

16.
Abstract

An absolute analytical procedure is found for obtaining the parameters of the differential, binary, copolymer composition equation, setting up a least-squares condition that places equal weight on all experimental lines of the Mayo-Lewis plot. The values of monomer reactivity ratios for the system ethyl methacrylate (M1-vinylidene chloride (M2), studied by Agron et al., are r1 = 2.052 ± 0.043 and r2 = 0.346 ± 0.052. These values, especially r1, differ from the estimates by Agron et al. The new solution, however, appears to yield the estimate of maximum likelihood for the reactivity ratios based on the given experimental data.  相似文献   

17.
A computerized version of the Fineman-Ross linearization procedure was used to determine reactivity ratios for copolymerization of vinyl chloride (monomer 1) and 2-methylpentyl vinyl brassylate (monomer 2). From differential refractometry data for the products of low-conversion copolymerization, the procedure gave r1 = 1.06 and r2 = 0.234. The ratios computed from chlorine contents of the same products were r1 = 1.10 and r2 = 0.239. The polarity factor (e2) and general monomer reactivity (Q2) calculated for monomer 2 from these ratios were, respectively, ?0.95 to ?0.98 and 0.032–0.033. The interquartile range for the copolymerization of a mixture of 60% monomer 1 and 40% monomer 2 was 1.4%. These values suggest that from suitable proportions of reactants, sufficiently homogeneous distribution of monomers can be achieved in copolymers of vinyl chloride and 2-methylpentyl vinyl brassylate to offer the possibility of effective internal plasticization.  相似文献   

18.
The polymerization ability of two new pyrazolone-containing monomers—3-methyl-1-phenyl-4-crotonoyl-pyrazolone-5 ( Cr ) and 3-methyl-1-phenyl-4-(3′-phenyl-acryloyl) pyrazolone-5 ( Cy )—was investigated. The monomers were obtained by acylation of 3-methyl-1-phenyl-pyrazolone-5 with crotonyl chloride or cinnamoyl chloride, respectively. It was established that the two monomers do not homopolymerize either under the action of ionic and radical initiators nor with γ-rays (doses between 2 and 10 MRad). In contrast to this, the two monomers copolymerize with other vinyl comonomers. Copolymers of Cr and Cy with methacrylic acid (MAA), methyl methacrylate (MMA), and Styrene (St) were synthesized by radical copolymerization. The molecular weights of the polymer products obtained were in the 10,000–65,000 range. It was established that the molecular weight characteristics of the copolymers were affected by the concentration of the pyrazolone-containing monomer and by the chemical nature of the solvent used. The copolymerization of Cr and Cy with MAA was investigated in detail in order to evaluate the relative activity of the new monomers during copolymerization. The reactivity ratios (r) were calculated by three different methods with good agreement. The values obtained for the monomer pairs are: rMAA = 0.61 ± 0.01, rCr = 0.04 ± 0.01; rMAA = 0.64 ± 0.05, rCy = 0.02 ± 0.02. The Q/e values for Cr and Cy were determined using the reactivity ratios of both monomers.  相似文献   

19.
2,3-Dihydropyran (DHP) and ethyl vinyl ether (EVE) were co-polymerized with maleic anhydride (MA) with benzoyl peroxide at 60°C, and 1:1 alternating copolymers were obtained. The rates were maximum at 1:1 monomer composition. Spontaneous copolymerization and solvent effect on the rate were observed in the copolymerization of DHP with MA, in which initial rates were slower in more polar solvents. Participation of charge transfer complex was considered. EVE copolymerized rapidly with MA, reaching the theoretical limiting conversion of 1:1 alternating copolymerization. Although DHP-MA comonomer pair and EVE-MA comonomer pair formed similar 1:1 charge transfer complexes, DHP copolymerized slowly with MA to produce a low molecular weight copolymer, and the limiting conversion was much lower than the theoretical one. To explain these, degradative chain transfer to DHP monomer is proposed as the initial rate of DHP-MA copolymerization is proportional to the initiator concentration to the power 1.1. Q and e values of DHP were calculated to be 0.013 and -0.93, respectively, from the monomer reactivity ratios of copolymerization of DHP with acrylonitrile [r1 (DHP)=0.003 ± 0.006 and r2 (AN)=3.6 ± 0.3].  相似文献   

20.
The copolymerization of 4-cyclopentene-1,3-dione (M2) with p-chlorostyrene and vinylidene chloride is reported. The copolymers were prepared in sealed tubes under nitrogen with azobisisobutyronitrile initiator. Infrared absorption bands at 1580 cm.?1 revealed the presence of a highly enolic β-diketone and indicated that copolymerization had occurred. The copolymer compositions were determined from the chlorine analyses and the reactivity ratios were evaluated. The copolymerization with p-chlorostyrene (M1) was highly alternating and provided the reactivity ratios r1 = 0.32 ± 0.06, r2 = 0.02 ± 0.01. Copolymerization with vinylidene chloride (M1) afforded the reactivity ratios r1 = 2.4 ± 0.6, r2 = 0.15 ± 0.05. The Q and e values for the dione (Q = 0.13, e = 1.37), as evaluated from the results of the vinylidene chloride case, agree closely with the previously reported results of copolymerization with methyl methacrylate and acrylonitrile and confirm the general low reactivity of 4-cyclopentene-1,3-dione in nonalternating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号