首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

2.
The thermal degradation of poly(vinyl bromide) (PVB), poly(vinyl chloride) (PVC), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(vinyl fluoride) (PVF), poly(vinylidene chloride) (PVC2), and poly(vinylidene fluoride) (PVF2) has been studied by direct pyrolysis–mass spectrometry (DP-MS) and flash pyrolysis–gas chromatography–mass spectrometry techniques. Vinyl and vinylidene polymers exhibit two competitive thermal degradation processes: (1) HX elimination with formation of polyene sequences which undergo further moleculaar rearrangements, and (2) main-chain cleavage with formation of halogenated or oxigenated compounds. The overall thermal degradation process depends on the prevailing decomposition reaction in each polymer; therefore, different behaviors are observed. The thermal degradation of polyacetylene (PA) has also been studied and found important for the elucidation of the thermal decomposition mechanism of the title polymers.  相似文献   

3.
A short introduction to polymer-polymer miscibility and to the prediction of the miscibility of polymers is given. The four main types of polymer-modified poly(vinyl chloride) (plastification, impact modification, processing aids and heat deflection temperature modification) are explained by examples. The thermal stability of poly(vinyl chloride) in such blends is discussed; the effectivity of tin-stabilizers may be higher in such blends than in pure poly(vinyl chloride).  相似文献   

4.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

5.
Abstract

Radical copolymerization kinetics of vinyl chloride (VC) and vinyl bromide (VB) lead to the following reactivity ratios rVC=0.825 rVB=1.05 Vinyl bromide acts as a chain transfer agent, more powerful than vinyl chloride, the transfer constant for VC radicals being 8.5 × 10?3 at 40° C. Neither thermal nor ionic degrad-ation produce controlled distribution of short diene sequences in the copolymer. In the ionic process initiated with LiCl or LiBr in dimethylformamide solution, substitution of halogen atoms as well as acid elimination takes place.  相似文献   

6.
Dynamic mechanical properties determined with a torsion pendulum were used to ascertain the glass transition temperature Tg of poly-ε-caprolactone. By measurements on compatible blends of poly-ε-caprolactone and poly(vinyl chloride), the Tg of amorphous poly-ε-caprolactone was shown to be 202°K at about 1 cps. This is 16°K lower than the Tg of annealed, crystalline polymer. The blend transition data were well fitted by both the Fox and the Gordon-Taylor expressions. The Fox expression was also used to describe the decrease from 233°K of the secondary low-temperature relaxation due to poly(vinyl chloride) by assuming the low temperature relaxation of poly-ε-caprolactone, 138°K, was responsible for the decrease in the blends. The 138°K relaxation due to poly-ε-caprolactone was decreased when more than 50% poly(vinyl chloride) was present.  相似文献   

7.
It is shown that polyvalerolactone/poly(vinyl chloride) (PVL/PVC) blends are miscible over all compositions since a single glass transition temperature Tg is observed, intermediate between those of pure PVL and pure PVC. Melting points, enthalpies of fusion and morphologies of PVL/PVC blends are also reported. It is also shown that polyvalerolactone, poly(α-methyl-α-n-propyl-β-propiolactone), poly(α-methyl-α-ethyl-β-propiolactone), and poly(caprolactone) are immiscible with poly(vinyl fluoride) and poly(vinylidene fluoride), despite the fact that all these polylactones are miscible with PVC. Differences in electronegativity, in atomic radius, and in molar attraction between the fluoride and the chlorine atoms are probably responsible for this difference in behavior.  相似文献   

8.
A novel route for producing polymer blends by reactive extrusion is described, starting from poly (vinyl chloride)/methyl methacrylate (PVC/MMA) dry blend and successive polymerization of MMA in an extruder. Small angle X‐ray scattering (SAXS) measurements were applied to study the monomer's mode of penetration into the PVC particles and to characterize the supermolecular structure of the reactive poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blends obtained, as compared to the corresponding physical blends of similar composition. These measurements indicate that the monomer molecules can easily penetrate into the PVC sub‐primary particles, separating the PVC chains. Moreover, the increased mobility of the PVC chains enables formation of an ordered lamellar structure, with an average d‐spacing of 4.1 nm. The same characteristic lamellar structure is further detected upon compression molding or extrusion of PVC and PVC/PMMA blends. In this case the mobility of the PVC chains is enabled through thermal energy. Dynamic mechanical thermal analysis (DMTA) and SAXS measurements of reactive and physical PVC/PMMA blends indicate that miscibility occurs between the PVC and PMMA chains. The studied reactive PVC/PMMA blends are found to be miscible, while the physical PVC/PMMA blends are only partially miscible. It can be suggested that the miscible PMMA chains weaken dipole–dipole interactions between the PVC chains, leading to high mobility and resulting in an increased PVC crystallinity degree and decreased PVC glass transition temperature (Tg). These phenomena are shown in the physical PVC/PMMA blends and further emphasized in the reactive PVC/PMMA blends. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This study [Part II of a series dealing with the compatibility of polyalkyleneoxides with poly(vinyl chloride)] examines blends of PVC with poly(propylene oxide) (PPrO) and poly(tetra-methylene oxide) (PTMO), covering the entire composition range. Morphological, dynamic mechanical and thermal properties investigated indicate that PVC/PPrO blends are incompatible, whereas the PVC/PTMO system shows miscibility in the melt. For this polyblend and at high polyether compositions where the Hoffman–Weeks analysis can be applied, Tm equilibrium data allow the determination of the thermodynamic interaction parameter, χ12 = ?0.15. Experimental compatibility data of all polyether-PVC pairs investigated in Parts I and II are also used to test various blend miscibility prediction schemes, using solubility parameter theory and recent theory on copolymer-copolymer miscibility.  相似文献   

10.
《European Polymer Journal》1987,23(11):907-911
This article refers to a study of the thermal behaviour of poly(ethylene oxide) and poly(vinyl chloride) blends in the solid state. The compatibility has been examined by differential scanning calorimetry. The influence of molecular masses of the polymers on their compatibility has been shown. The equilibrium melting temperatures decrease in the mixture, such behaviour being progressively greater with the PEO reduction. The melting temperature of blends increases linearly with the crystallization temperature for a wide range of undercooling. Values of the parameters χ12 and B have been obtained.  相似文献   

11.

Blend films of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by casting from aqueous solutions. This blend films were characterized by tensile strength test, Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The miscibility in the blends of PVA and NaAlg was established on the basis of the thermal analysis results. DSC showed that the blends possessed single, composition‐dependent glass transition temperatures (Tgs), indicating that the blends are miscible. FT‐IR studies indicate that there is the intermolecular hydrogen bonding interactions, i.e. –OH…?OOC– in PVA/NaAlg blends. The blend films also exhibited the higher thermal stability and their mechanical properties improved compared to those of homopolymers.  相似文献   

12.
Head to head polypropylene was prepared by catalytic hydrogenation of eithercis-1,4-poly(2,3-dimethylbutadiene) ortrans-1,4-poly(2,3-dimethylbutadiene) with cobalt 2-ethylhexanoate/triethylaluminium as the hydrogenation catalyst in decahydronaphthalene solution. The hydrogenation occurred predominantly bycis hydrogen addition, but was not stereospecific. The samples of head to head polypropylene were characterized by IR and NMR, particularly by13C-NMR spectroscopy. The polymers were amorphous and exhibited glass transition temperatures about 20°C lower than that of head to tail poly-propylene; the glass transition temperatures were measured by DSC and varied somewhat from sample to sample (sufficiently high molecular weight) according to their stereochemistry. TheT gvalues were confirmed by Rheovibron measurements. The thermal stability of head to head polypropylene is not significantly different from that of either atactic or isotactic head to tail polypropylene.Part XVI:Grossman S., Yamada A., Vogl O., J. Macromol. Sci.-Chem.A 16, 897 (1981).  相似文献   

13.
Thermal measurements were carried out to investigate the macrostructure of as-cast poly(vinylidene fluoride) (PVDF)/poly(vinyl pyrrolidone) (PVP) blends. At high PVP content, above about 70 wt.%, the two components form a homogeneously mixed amorphous phase whose Tg varies with composition. Crystals are formed upon casting mixtures richer in PVDF; these systems exhibit complex thermal behavior that cannot be justified by a simple two-phase model. DSC measurements above room temperature on semicrystalline blends show, in addition to the melting of PVDF crystals at temperatures that decrease on increasing PVP content, a glass transition at about 80°C, independent of composition. Experimental results strongly support the hypothesis that an interphase, composed of essentially undiluted noncrystalline PVDF, is always associated with the lamellar crystals.  相似文献   

14.
In situ degradation of poly(vinyl chloride)/poly (N-vinyl-2- pyrrolidone) (PVC/PVP) blends has been studied by Fourier-transform Raman spectroscopy. PVP acts as a destabilizer in the thermal degradation of PVC as manifested by the reduction of temperature for the onset of degradation and the time the polymer is held at a particular temperature for this onset. Increasing the amount of PVP in the blends decreases the dehydrochlorination temperature and time. In blends containing high PVP concentrations, polyene bands dominate over nondegraded PVC bands. Maximum polyene lengths of around 35 were achieved. High PVP ratios and prolonged degradation at higher temperatures resulted in a decrease in mean polyene length due to crosslinking and oxidative scission.  相似文献   

15.

HCl elimination in low ratio was first carried out from poly(vinyl chloride) to increase allylic chlorines. Partially dehydrochlorinated poly(vinyl chloride), having a macroinitiator effect, was grafted with tert‐butyl methacrylate via atom transfer radical polymerization in the presence of CuBr/2,2′‐bipyridine at 64°C in tetrahydrofuran. Original poly(vinyl chloride) was also grafted with tert‐butyl methacrylate under the same conditions to compare with that of partially dehydrochlorinated poly(vinyl chloride). The graft copolymers were characterized by elemental analysis, FTIR, 1H and 13C‐NMR, differential scanning calorimetry, and gel permeation chromatography (GPC). Thermal stabilities of the graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators.  相似文献   

16.
《European Polymer Journal》1985,21(11):915-917
Poly(neopentyl glycol adipate), PDPA, is immiscible with poly(vinyl fluoride) but miscible with poly(vinylidene fluoride), indicating the importance of CO ⋯ F-C interaction in achieving miscibility of the blend. Based on the melting point depression of poly(vinylidene fluoride) in the blend, the interaction parameter B was found to be −1.9 cal/cm3. PDPA is immiscible with poly(vinyl bromide) and with poly(p-bromostyrene). The miscibility of PDPA/poly(vinylidene bromide) blend could not be ascertained because of the poor thermal stability of poly(vinylidene bromide).  相似文献   

17.
The mechanism of dehydrochlorination of 2,3-dichlorobutane and chlorinated polybutadiene which are model compounds of head-to-head poly(vinyl chloride) has been investigated by pyrolysis, thermal, and ultraviolet-induced decomposition. The activation energy of dehydrochlorination for head-to-head poly(vinyl chloride) in nitrogen was 23 kcal/mole at temperatures of 150–190°C, which is slightly smaller than that (29 kcal/mole) for head-to-tail poly(vinyl chloride). The conjugated double bonds were formed by thermal and radiation decomposition of head-to-head poly(vinyl chloride), similar to head-to-tail poly(vinyl chloride). The probability of polyene formation by radiation-induced dehydrochlorination is larger than that by thermal decomposition and is affected by the conformation and the molecular motion of the main chain. This may be due to the alternative mechanism of dehydrochlorination in the thermal and radiation decomposition. The amount of head-to-head linkage of poly(vinyl chloride) samples prepared with various catalysts is dependent on polymerization temperature rather than the kinds of catalyst. Commercial poly(vinyl chloride) has 6–7 head-to-head linkages per 1000 monomeric units.  相似文献   

18.
Abstract

The binding of pyrenesulfonic acid and pyrenebutyric acid to poly(vinyl benzyl trimethylammonium) chloride was investigated by UV and fluorescence spectroscopy. It was found that the binding constant was 7.5 × 104 and 3.5 × 104M?1, respectively. The addition of the polyelectrolyte quenches the fluorescence of the pyrene group, and at the same time the typical excimer emission appears. This emission originates in pre-formed ground state aggregates of the pyrene derivatives incorporated into the polyion domain. Similar effects were observed when anionic polyelectrolytes, poly(styrene sulfonic), and poly(vinyl sulfonic) acids were added to cationic pyrene derivatives. The binding constants depend on the length of the aliphatic sidechain of the derivatives.  相似文献   

19.
Thermal stability of poly(vinyl chloride)/poly(ethylene oxide) (PVC/PEO) blends has been investigated by thermogravimetric analysis (TGA) in dynamic and isothermal heating regime. PVC/PEO blends were prepared by hot-melt extrusion (HME). According to TG analysis, PEO decomposes in one stage, while PVC and PVC/PEO blends in two degradation stages. In order to evaluate the effect of PEO content on the thermal stability of PVC/PEO blends, different criteria were used. It was found that thermal stability of PVC/PEO blends depends on the blend composition. The interactions of blends components with their degradation products were confirmed. By using multiple heating rate kinetics the activation energies of the PVC/PEO blends thermal degradation were calculated by isoconversional integral Flynn–Wall–Ozawa and differential Friedman method. According to dependence of activation energy on degree of conversion the complexity of degradation processes was determined.  相似文献   

20.
The thermal degradation of poly(vinyl chloride)/chlorinated poly(ethylene) (PVC/CPE) blends of different compositions was investigated by means of dynamic and isothermal thermogravimetric analysis in flowing atmosphere of nitrogen. Kinetic parameters (the apparent activation energy E, and pre-exponential factor Z) were calculated after Flynn-Wall-Ozawa method for the first stage of dynamic degradation of PVC/CPE blends, and after Flynn method for the isothermal degradation. In both cases, there is the compensation dependence between the values E and logZ. The values of compensation ratios as well as the characteristics of TG and DTG curves, confirm the stabilizing effect of CPE on PVC dehydrochlorination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号