首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We report parallel solution and solid state studies of the inclusion of the anionic form of the non-steroidal anti-inflammatory drug niflumic acid (2-[[3-(trifluoromethyl)phenyl]-amino]-3-pyridinecarboxylic acid) in the host g -cyclodextrin ( g -CD). 1 H NMR data for the interaction between host and guest in aqueous solution recorded at 300 MHz indicated a strong preference for insertion of the trifluoromethylphenyl residue, rather than the pyridinecarboxylate moiety, in the host cavity. A 1:1 complex stoichiometry was determined by the continuous variation method utilising chemical shifts of both host and guest protons. Analysis of the data using a new flexible program developed for this purpose yielded an overall association constant K of 336 M m 1 at 298 K. The NMR data indicate a dynamic equilibrium between complexed and uncomplexed species but do not distinguish guest entry from the primary and secondary sides of the host. Reaction between the Cs + salt of niflumic acid and g -CD yielded the crystalline complex ( g -CD) 2 ·(Cs + niflumate m ) 4 ·22H 2 O whose single crystal X-ray structure was determined. A novel inclusion mode for this host, namely entry of guest trifluoromethylphenyl residues from both the primary and secondary sides, was revealed by the X-ray analysis.  相似文献   

2.
Complexation between sulconazole (SULC), an imidazole derivative with in vitro antifungal and antiyeast activity, and β-cyclodextrins (β-CD and HP-β-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (1H-NMR). In the solid state, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and RX diffraction studies were used. Solubility studies suggested the existence of inclusion complex between SULC and β-CD or HP-β-CD. 1H-NMR spectroscopy studies showed that the complex formed occurs by complexation of imidazole ring into inner cavity. DSC studies showed the existence of a complex of SULC with β-CD. The TGA and RX studies confirmed the DSC results of the complex. Solubility of SULC in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.  相似文献   

3.
4.
We report on steady-state UV-visible absorption and emission characteristics of Paracetamol, drug used as antipyretic agent, in water and within cyclodextrins (CDs): β-CD, 2-hydroxypropyl-β-CD (HP-β-CD) and 2,6-dimethyl-β-CD (Me-β-CD). The results reveal that Paracetamol forms a 1:1 inclusion complex with CD. Upon encapsulation, the emission intensity enhances, indicating a confinement effect of the nanocages on the photophysical behavior of the drug. Due to its methyl groups, the Me-β-CD shows the largest effect for the drug. The observed binding constant showing the following trend: Me-β-CD>HP-β-CD>β-CD. The less complexing effectiveness of HP-β-CD is due to the steric effect of the hydroxypropyl-substituents, which can hamper the inclusion of the guest molecules. The solid state inclusion complex was prepared by co-precipitation method and its characterization was investigated by Fourier transform infrared spectroscopy, 1H NMR and X-ray diffractometry. These approaches indicated that Paracetamol was able to form an inclusion complex with CDs, and the inclusion compounds exhibited different spectroscopic features and properties from Paracetamol.  相似文献   

5.
Complexation between 5-flucytosine (5-FC), a cytosine analogue with in vitro antifungal and antiyeast activity, and β-cyclodextrins (β-cyclodextrin and hydroxypropyl-β-cyclodextrin) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies, UV–vis and 1H-NMR. In the solid state, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), FT-IR and X-ray diffraction studies were used. UV–vis, FT-IR and 1H-NMR spectroscopy studies showed that the complex formed occurs by complexation of piridinique base analogue into inner cavity. DSC studies showed the existence of a complex of 5-FC with β-CDs. X-ray studies confirmed the DSC results of the complex existence. Solubility studies showed that the complexed drug is forty times more soluble than free 5-FC, indicating the obtained systems as future, promising drug carriers.  相似文献   

6.
The structural aspects for the complexation of ortho-anisidine (O-AN)/β-cyclodextrin were explored by using PM6, density function theory B3LYP/6-31G*, M05-2X/6-31G*, B3PW91/6-31G*, MPW1PW91/6-31G*, HF/6-31G* methods and several combinations of ONIOM2 hybrid calculations. Calculations were performed upon the inclusion complexation of β-cyclodextrin (β-CD) with neutral (O-AN1) and cationic (O-AN2) species of ortho-anisidine. The obtained results with PM6 method clearly indicate that the formed complexes are energetically favored, the complex of O-AN2/β-CD in B orientation is significantly more favorable than the others energetically. The structures show the presence of several intermolecular hydrogen bond interactions that were studied on the basis of natural bonding orbital (NBO) analysis, employed to quantify the donor–acceptor interactions between ortho-anisidine and β-CD.  相似文献   

7.
The inclusion of α-lipoic acid (LA) in β-cyclodextrin (β-CD) by increasing the aqueous solubility and photostability can enhance its medicinal use in the oral administration. Different preparation methods were employed to obtain an α-lipoic acid-β-cyclodextrin (LA-β-CD) inclusion complex and to determine the physical–chemical characteristics and the interactions present in this compound. The formation of the solid inclusion compound was confirmed by X-ray powder diffraction, differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). FTIR and DSC data confirm the new obtained compound. The crystalline structure of this compound belongs to the monoclinic system with four molecules in the unit cell. 1H NMR spectroscopic method was employed to study the inclusion process in aqueous solution. Job plots derived from the 1H NMR spectral data demonstrated an 1:1 stoichiometry of the inclusion complex in liquid state. 2D NMR data suggest the orientation of LA with the carboxyl group near to narrower rim of the β-CD.  相似文献   

8.
The complexation process between racemic flurbiprofen and β-cyclodextrin in solution was investigated by 1D and 2D proton NMR spectroscopy. In the presence of β-cyclodextrin, the aromatic protons of flurbiprofen were the most affected, suggesting a strong involvement of the phenyl groups in the inclusion mechanism. The stoichiometry of the complex was determined by the method of continuous variation, using the chemical induced shifts of both host and guest protons. The association constant, Ka of the obtained complex was calculated and found to be 2483.8 M?1. On the other hand, signals belonging to the protons associated with the carboxyl group are split in the presence of β-cyclodextrin indicating enantiomeric differentiation. Rotating frame NOE spectroscopy, (ROESY), was used to ascertain the solution geometry of the host–guest complex. The result suggested that the flurbiprofen molecule fully penetrates the β-cyclodextrin cavity with the carboxyl group protruding from the primary hydroxyl side and the phenyl group close to the secondary rim.  相似文献   

9.
The X-ray structure and thermal stability of a -cyclodextrin inclusion complex of the antidepressant paroxetine [(3S-trans)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine], with the formula ( -cyclodextrin)2...paroxetine...28H2O, are reported. On heating, the crystals dehydrate in two stages and begin to decompose from approximately 270 °C. An X-ray diffraction study at 173K showed that the complex crystallizes in the monoclinic system, space group P21 with a = 15.2262(3), b = 31.4771(1), c = 15.6739(1) Å, = 104.320(1)° and Z = 2 formula units. Refinement on F2 converged at R1 = 0.066, wR2 = 0.182 (21478 reflections). On encapsulation within a head-to-head -cyclodextrin dimer, the paroxetine molecule adopts an unusual `hairpin' conformation, stabilised by intramolecular ... interaction between the phenyl rings. The guest piperidine ring is located at the primary face of one host molecule of the dimer while the fluorophenyl and benzodioxole moieties respectively occupy the dimer interfacial region and the cavity of the second host molecule. Experimental and computed X-ray powder diffraction patterns for the complex are also reported. The mode of stacking of the dimeric complex units is shown to be one of at least three distinct variants which can be identified for -cyclodextrin complexes with similar unit cell dimensions and crystallizing in the same space group.  相似文献   

10.
11.
(?)-Linalool is a monoterpene alcohol which is present in the essential oils of several aromatic plants. Recent studies suggest that (?)-linalool has antimicrobial, anti-inflammatory, anticancer, antioxidant, and antinociceptive properties in different animal models. The aim of this study was to prepare and characterize inclusion complexes of (?)-linalool with β-cyclodextrin (β-CD). Equimolar binary (?)-linalool/β-CD systems were prepared by physical mixture, paste (PM), and slurry methods (SC) and characterized by differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy, X-ray diffractometry, Karl Fisher titration, and scanning electron microscopy. Thermal characterization indicates the occurrence of complexation, mainly in paste complexes, which is present in the interval from 140 to 280 °C a gradual mass loss (4.6 %), probably related to (?)-linalool loss. FT-IR spectra showed changes that may be related to the formation of intermolecular hydrogen bonds between (?)-linalool and β-CD. The new solid-phase formed using the PM and SC methods, had a crystal structure which was different from the original morphology of β-CD.  相似文献   

12.
Sulfanilamide belongs to the group of drugs that have a bacteriostatic effect on different pathogenic microorganisms. This activity originates from the competitive antagonism with p-aminobenzoic acid, which is an integral part of folic acid. The safe use of sulfanilamide is limited due to poor solubility in the aqueous medium. Therefore, the aim of this paper is the synthesis of sulfanilamide, as well as preparing and structural characterization of its inclusion complexes with cyclodextrins. The crude sulfanilamide was obtained in the synthesis between acetanilide and chlorosulfonic acid according to the standard procedure. The synthesized sulfanilamide was recrystallized from water in order to obtain the satisfactory purity of the substance. Sufanilamide was complexed with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin by the co-precipitation method. A molecular encapsulation of sulfanilamide was confirmed by using FTIR, 1H-NMR, XRD and DSC methods. Phase-solubility techniques were used to assess the formation of the inclusion complex between sulfanilamide and cyclodextrins. The photostability of sulfanilamide and its inclusion complexes was estimated by UVB irradiation in a photochemical reactor by applying the UV–Vis method. Based on the UV–Vis analysis, sulfanilamide:2-hydroxypropyl-β-cyclodextrin complex was presented as more photostable than sulfanilamide:β-cyclodextrin complex and sulfanilamide. The obtained results enable the potential use of these inclusion complexes for the preparation of oral formulations due to the enhanced solubility of sulfanilamide.  相似文献   

13.
PM3 theoretical methodology was used to access and compare the relative stability of inclusion complexes formed by sulphadiazene, sulphisomidine, sulphamethazine and sulphanilamide with β-cyclodextrin (β-CD). The study predicted that (i) the heterocyclic ring is encapsulated in the hydrophobic part and aniline ring is present in the hydrophilic part of the β-CD cavity and (ii) intermolecular hydrogen bonds were formed between host and guest molecules. The negative free energy and enthalpy changes indicated that all the four inclusion complexation processes were spontaneous and enthalpy driven process. HOMO and LUMO orbital investigation confirmed that the stability increased in the inclusion complexes and also proved no significant change in the electronic structure of the guest and host molecules after complexation.  相似文献   

14.
Cetyltrimethylammonium bromide (CTAB)/potassium bromide (KBr) micellar system has been used as a viscosity probe to study the inclusion complexation between β-cyclodextrin (β-CD) and CTAB. Viscosity measurements show that the inclusion complexation between β-CD and CTAB may cause the breakdown of CTAB/KBr wormlike micelles, resulting in the decrease of the solution viscosity. The viscosity minimum at Cβ-CD/CCTAB=2 indicate the molecular ratio of host molecule to guest molecule is 2:1 in the β-CD/CTAB inclusion complex.  相似文献   

15.
Abstract

1-Diphenylmethyl-4-methylpiperazine (cyclizine) is an antiemetic drug which forms an inclusion complex with β-cyclodextrin of formula (β-cyclodextrin)4 · (cyclizine)3 · 50H2O. This species crystallizes in the monoclinic space group P21 with a = 15.246(1), b = 65.075(5), c = 15.609(1) Å, β = 102.62(1)° and Z = 2 formula units. Complex water content and the host:drug stoichiometric ratio were determined by thermogravimetry and UV spectrophotometry respectively. Differential scanning calorimetry showed that the crystals dehydrate in at least two stages and begin to decompose from approximately 250°C. The crystal structure was solved by a combination of Patterson search and direct methods. Isotropic refinement converged at R = 0.094 for 8806 reflections with I > 2σ(I). The unusual stoichiometry is accounted for as follows: the four β-cyclodextrin molecules comprising the asymmetric unit occur as two independent head-to-head dimers, each formed by O—H…O hydrogen bonding across the macro-cyclic secondary surfaces. One dimer contains two cyclizine guest molecules in head-to-tail orientation, thus accounting for two distinct modes of drug inclusion. In the second dimer, only one β-cyclodextrin molecule is significantly occupied by a cyclizine molecule (in a mode analogous to one of those in the first dimer), the other half of the dimer being largely devoid of guest. A possible mechanism for the formation of this unusual structure is proposed and the crystal packing arrangement is shown to be based on a novel disrupted tetrameric channel motif.  相似文献   

16.
Allicin, the active thiosulphinate present in freshly crushed garlic, has potent antimicrobial activity but is chemically labile. As part of a study aimed at producing stable allicin analogues as potential antimicrobial agents, the allicin mimic S-p-tolyl t-butylthiosulphinate was synthesised and complexed with β-cyclodextrin (β-CD). The inclusion complex, β-CD·S-p-tolyl t-butylthiosulphinate·12.5H2O, was characterised by thermal analysis techniques (HSM, TG, DSC), powder X-ray diffraction and single-crystal X-ray diffraction. The inclusion complex is dimeric (space group C2221) with the guest disordered over three positions. Within each β-CD molecule of the dimer, each disordered guest component is located in the host cavity with the t-butyl group protruding slightly from the primary hydroxyl side, while the phenyl ring is situated near the secondary hydroxyl side and the thiosulphinate moiety is centrally located within the host cavity. Stereoselectivity of guest inclusion is implicit in the disordered model, which reflects a 2:1 ratio of S- and R-enantiomers in the β-CD cavity.  相似文献   

17.
Pioglitazone hydrochloride (PIO) is an agonist of the peroxisome proliferator-activated receptor γ (PPARγ), used to treat diabetes. 1H-NMR spectroscopic analysis of varying ratios of β-cyclodextrin (β-CyD) and PIO in D2O confirmed the formation of β-CyD–PIO inclusion complex in aqueous solution. The 1:1 stoichiometry of β-CyD–PIO inclusion complex was determined by Scott’s plot method and binding constant (K a ) was calculated to be 155 M?1. 2D ROESY experiments confirmed that the phenyl ring of PIO act as a guest and deeply penetrate in β-CyD cavity from wider as well as narrower rim side and form two 1:1 stable inclusion complexes. Some of the PIO protons exhibited splitting, in the presence of β-CyD, indicating chiral differentiation of PIO by β-CyD.  相似文献   

18.
The inclusion complexes of β-cyclodextrin (β-CD) with pyrazinamide (PYA) and piperazine (PIZ) have been investigated both in the solid phase by single-crystal X-ray diffraction analysis and in the gas phase by semi-empirical PM3 calculation. In the crystalline phase, the disordered PYA and PIZ molecules are entirely embedded in the β-CD cavity. The PYA pyrazine-centre displaces upwards by 1.15(1) Å from the β-CD plane, whereas the PIZ centre shifts downwards by 0.76(1) Å from the β-CD plane. The inclusion scenario changed in the gas phase. Two inclusion geometries of the PYA molecule are comparatively stable with binding energies of ? 22.28 and ? 25.29 kJ mol? 1: the pyrazine centre shifts upwards by 0.5 Å and downwards by 2.0 Å from the β-CD plane. The PIZ molecule positioning at 2.0 Å below the β-CD plane gives a more stable inclusion complex than does the PYA molecule by 22–25 kJ mol? 1.

Structural distinction of the β-CD–PYA and β-CD–PIZ inclusion complexes in the solid phase (by X-ray crystallography) and gas phase (by PM3 calculation) is a paradigm of the CD conformational flexibility, the induced-fit mechanism and the dynamics of the inclusion process.  相似文献   

19.
Two βCD dimers (linked by succinic acid, 2, or ethylenediaminetetraacetic acid, EDTA, 3, bridges) and a negatively charged monomer derivative of βCD, 1, have been synthesized and their ability to solubilize cholesterol in aqueous solution was studied. The three compounds exhibit a great capacity in solubilizing cholesterol as, for instance, concentrations up to 6 mM of cholesterol were measured in the presence of 25 mM of 3. The phase-solubility diagrams of the two dimers exhibit A L type profiles while the monomer 1 follows an A P isotherm. The cholesterol/dimer complexes have 1:1 stoicheiometries while monomer 1 forms two complexes with molar ratios of 1:1 and 1:2 (cholesterol/1). The equilibrium constants are K 1:1 = (5.9 ± 0.3) × 104 M?1 and K 1:1 = (8.8 ± 0.2) × 104 M?1 for 2 and 3, respectively, and K 1:1 = 73 ± 19 M?1 and K 1:2 = 204 ± 65 M?1 for 1. The comparison of K 1:1(3) with the product K 1:1 × K 1:2 (1) reveals that a chelate effect in binding the cholesterol by 3 exists. The structure of the cholesterol/3 complex was studied by ROESY experiments and by molecular dynamics simulations.  相似文献   

20.
Fluconazole (FZ) is a triazole antifungal drug administered orally or intravenously. It is employed for the treatment of mycotic infections. However, the efficacy of FZ is limited with its poor aqueous solubility and low dissolution rate. One of the important pharmaceutical advantages of cyclodextrins is to improve pharmacological efficacy of drugs due to increasing their aqueous solubility. The aim of present study was to prepare an inclusion complex of FZ and β-cyclodextrin (β-CD) to improve the physicochemical and biopharmaceutical properties of FZ. The effects of β-CD on the solubility of FZ were investigated according to the phase solubility technique. Complexes were prepared with 1:1 M ratio by different methods namely, freeze-drying, spray-drying, co-evaporation and kneading. For the characterization of FZ/β-CD complex, FZ amount, practical yield %, thermal, aqueous solubility, XRD, FT-IR and NMR (1H and 13C) analysis were performed. In vitro dissolution from hard cellulose capsules containing FZ/β-CD complexes was compared to pure FZ and its commercial capsules and evaluated by f1 (difference) and f2 (similarity) factors. Paddle method defined in USP 31 together with high pressure liquid chromatographic method were used in in vitro dissolution experiments. It was found that solubility enhancement by FZ/β-CD complexes depends on the type of the preparation method. High release of active agent from hard cellulose capsules prepared with β-CD complexes compared to commercial capsules was attributed to the interactions between β-CD and active agent, high energetic amorphous state and inclusion complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号