首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two mixed ligand ZnII complexes [Zn(phen)L2/2](H2L) ( 1 ) and [(phen)2Zn(μ‐L)Zn(phen)2]L � 11H2O ( 2 ) with H2L = suc‐cinic acid were prepared and crystallographically characterized. Complex 1 crystallizes in the monoclinic space group C2/c (no. 15) with a = 13.618(1) Å, b = 9.585(1) Å, c = 15.165(1) Å, β = 96.780(6)°, V = 1965.6(3)Å3, Z = 4 and complex 2 in the triclinic space group P 1¯ (no. 2) with a = 12.989(2)Å, b = 14.464(2)Å, c = 18.025(3)Å, α = 90.01(1)°, β = 109.69(1)°, γ = 112.32(1)°, V = 2917.4(8) Å3, Z = 2. 1 consists of succinic acid molecules and 1D zigzag [Zn(phen)(C4H4O4)2/2] polymeric chains, in which the tetrahedrally coordinated Zn atoms are bridged by bis ‐ monodentate succinato ligands. Succinic acid molecules play an important role in supramolecular assemblies of the polymeric chains into 2D layers as well as in the stacking of 2D layers. 2 is composed of [(phen)2Zn(μ‐L)Zn(phen)2]2+ complex cations, succinate anions and hydrogen bonded water molecules. Within the divalent cations, Zn atoms are octahedrally coordinated by four N atoms of two phen ligands and two O atoms of one bis‐chelating succinato ligand. Through the intermolecular π—π stacking interactions, the complex cations form positively charged 2D layers, between which the noncoordinating succinate anions and water molecules are sandwiched.  相似文献   

2.
Novel Zn2+ ion‐selective PVC based coated graphite electrodes were fabricated using the ionophores N‐((1H‐indol‐3‐yl)methylene)thiazol‐2‐amine (I1), N‐((1H‐indol‐3‐yl)methyl)‐thiazol‐2‐amine (I2) and 1‐((1H‐indol‐3‐yl)methylene)urea (I3). Their potentiometric performance was examined in dependence of the addition of plasticizers and anion excluders and compared. It is found that the coated graphite electrode with the composition I1:KTpClPB:o‐NPOE:PVC=9 : 1.5 : 51 : 38.5 is the best with respect to the wide working concentration range (4.2×10?8–1.0×10?1 mol L?1), low detection limit (1.6×10?8 mol L?1) and wide pH range of 3.0–8.0. The proposed electrode was successfully applied to quantify Zn2+ in various environmental, biological and medicinal plant samples and used as indicator electrode.  相似文献   

3.
The new ligand, [Fc(cyclen)2] ( 5 ) (Fc=ferrocene, cyclen=1,4,7,10‐tetraazacyclododecane), and corresponding ZnII complex receptor, [Fc{Zn(cyclen)(CH3OH)}2](ClO4)4 ( 1 ), consisting of a ferrocene moiety bearing one ZnII‐cyclen complex on each cyclopentadienyl ring, have been designed and prepared through a multi‐step synthesis. Significant shifts in the 1H NMR signals of the ferrocenyl group, cf. ferrocene and a previously reported [Fc{Zn(cyclen)}]2+ derivative, indicated that the two ZnII‐cyclen units in 1 significantly affect the electronic properties of the cyclopentadienyl rings. The X‐ray crystal structure shows that the two positively charged ZnII‐cyclen complexes are arranged in a trans like configuration, with respect to the ferrocene bridging unit, presumably to minimise electrostatic repulsion. Both 5 and 1 can be oxidized in 1:4 CH2Cl2/CH3CN and Tris‐HCl aqueous buffer solution under conditions of cyclic voltammetry to give a well defined ferrocene‐centred (Fc0/+) process. Importantly, 1 is a highly selective electrochemical sensor of thymidilyl(3′‐5′)thymidine (TpT) relative to other nucleobases and nucleotides in Tris‐HCl buffer solution (pH 7.4). The electrochemical selectivity, detected as a shift in reversible potential of the Fc0/+ component, is postulated to result from a change in the configuration of bis(ZnII‐cyclen) units from a trans to a cis state. This is caused by the strong 1:1 binding of the two deprotonated thymine groups in TpT to different ZnII centres of receptor 1 . UV‐visible spectrophotometric titrations confirmed the 1:1 stoichiometry for the 1 :TpT adduct and allowed the determination of the apparent formation constant of 0.89±0.10×106 M ?1 at pH 7.4.  相似文献   

4.
Synthesis and Crystal Structure of Na2Zn(OH)4 Crystallization from saturated sodium hydroxozincate solutions yields colourless platelets of crystals of Na2Zn(OH)4. The X‐ray structure determination on these crystals was successful including all hydrogen positions. P21/n, Z = 4, a = 7.959(3) Å, b = 6.534(1) Å, c = 8.501(3) Å, β = 93.97(3)°, N(F2o ° 2σ F2o) = 1668, N(Var.) = 81, R1/wR2 = 0.043/0.107. Na2Zn(OH)4 crystallizes in a layered structure. Alternate layers contain Na+ in octahedral and Zn2+ in tetrahedral coordination by OH.  相似文献   

5.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

6.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4.  相似文献   

7.
A new zinc vanadate Zn2(OH)VO4 has been synthesized by an electrochemical-hydrothermal method and characterized by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic system, space group Pnma, a = 14.645(1) Å, b = 6.0215(5) Å, c = 8.8757(8) Å, V = 782.7(1) Å3, Z = 4, measured at 223 K. In the structure, rutile-type [ZnO6] octahedral chains are interconnected by [VO4] tetrahedra to form a framework of composition [Zn(OH)VO4], the voids of which are filled by Zn cations with trigonal bipyramidal and octahedral coordination. The structure is closely related to that of the adamite-type phases and the minerals descloizite PbZn(OH)VO4 and tsumcorite Pb0.5Zn(H2O)AsO4.  相似文献   

8.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

9.
Iron(II) and cobalt(II) complexes ( 7 ‐ 15 ) based on new aldimine 2, 6‐bis[(imino)methyl]pyridine ( 1 , 2 , 4 , 6 ) and ketimine (2, 6‐bis[(imino)ethyl]pyridine ( 3 , 5 ) ligands with bulky chiral aliphatic or aromatic terminal groups have been prepared and characterized by 1H NMR, 13C NMR, IR‐, mass spectroscopy (EI), and elemental analysis. The complex [CoCl2(BBoMP)]·1/2 CHCl3 ( 13 ) (BBoMP: 2, 6‐bis{(R‐(+)‐(bornylimino)‐methyl}pyridine) crystallizes in monoclinic space group P21 with cell dimensions: a = 7.6603(11) Å, b = 28.3153(14) Å, c = 13.537(2) Å, V = 2908.1(6) Å3, Z = 4. The coordination sphere around Co is distorted trigonal bipyramidal.  相似文献   

10.
Synthesis and Crystal Structure of Sr2Zn(OH)6 and Ba2Zn(OH)6 Crystallization from supersaturated sodium hydroxozincate solutions by adding solutions of alkali earth metal hydroxides yields crystals of Sr2Zn(OH)6 and Ba2Zn(OH)6. The X-ray structure determination on these crystals was successful including all hydrogen positions: Sr2Zn(OH)6: P21/n, Z = 2, a = 5.794(1) Å, b = 6.160(1) Å, c = 8.141(1) Å, b = 91.23(1)°, N(F ³° 2σ F) = 1127, N(Var.) = 53, R1/wR2 = 0.047/0.081Ba2Zn(OH)6: P21/n, Z = 2, a = 6.043(1) Å, b = 6.336(1) Å, c = 8.451(2) Å, b = 91.23(2)°, N(F ° 2σ F) = 1669, N(Var.) = 54, R1/wR2 = 0.029/0.067. Sr2Zn(OH)6 and Ba2Zn(OH)6 crystallize isotypic in a distorted Li2O structure type. Sr2+ resp. Ba2+ form a cubic primitive arrangement. Distorted octahedra of OH around Zn2+ fill therein alternating cubic gaps in an ordered way.  相似文献   

11.
A new layered zinc phosphite with the formula (NH4)[{Zn(H2O)4}0.5Zn2(HPO3)3] has been synthesized under hydrothermal conditions. Its structure was determined by single‐crystal X‐ray diffraction. The compound crystallizes in the triclinic system, space group (No. 2), a = 7.2507(4), b = 9.7982(6), c = 10.2642(6) Å, α = 63.425(2), β = 87.165(2), γ = 72.999(3)°, V = 620.84(6) Å3, Z = 2. The connectivity of ZnO4 tetrahedra, HPO3 pseudo pyramids and ZnO2(H2O)4 octahedra results in macroanionic layers with 4.8 net.  相似文献   

12.
Competition between Nitrogen and Sulfur Donor Atoms in Zinc(II) Complexes: [Zn(bims)2][SiF6] · 5MeOH and [ZnCl(paps)]2(Zn2Cl6) (bims = bis(2-benzimidazolylmethyl)sulfide; paps = o,o′-(N,N′-dipicolinylidene)diazadiphenyl-disulfide) [Zn(bims)2](SiF6) · 5 MeOH ( 1 ) was synthesized by reaction of Zn(SiF6) with the ligand bis(2-benzimidazolylmethyl)sulfide (bims). Zinc is tetrahedrally coordinated by four benzimidazole nitrogen atoms of the two ligand molecules, the sulfur atom does not coordinate. From reaction of ZnCl2 with o,o′-(N,N′-dipicolinylidene)diazadiphenyldisulfide (paps) [ZnCl(paps)]2(Zn2Cl6) ( 2 ) was obtained. Here, an octahedral coordination by four nitrogen atoms, one sulfur atom of the ligand and one chloride ion was found. Both compounds were characterized by infrared and 1H-NMR-spectroscopy as well as by single crystal X-ray structure analysis. Space groups and structural data: 1: P1 , a = 9.904(2), b = 10.951(3), c = 19.356(2) Å, α = 91.08(2), β = 91.11(2), γ = 95.74(2)°, R1 = 0.0631; 2: P1 , a = 9.051(3), b = 11.110(3), c = 15.170(4) Å, α = 92.99(2), β = 105.93(2), γ = 107.79(2)°, R1 = 0.0585.  相似文献   

13.
A novel ZnII complex of the saccharinate ligand (sac) with tris‐hydroxymethylaminomethane (tham) was synthesized and characterized by elemental analysis, FT‐IR spectroscopy, simultaneous TG and DTA techniques, and X‐ray diffraction. The complex, [Zn(sac)(tham)2](sac), crystallizes in monoclinic system with space group P21/c [a = 7.55954(3) Å, b = 13.0532(6) Å, c = 27.7777(10) Å, β = 100.539(3)°, Z = 4]. The ZnII ion has a distorted octahedral coordination. The tham ligand has chemically different functions in the structure, acting as both bidentate and tridentate ligands. There are also sac moieties to act as N‐bonded ligand and as a counter anion. The molecular packing of the complex is provided by moderate hydrogen bonds as well as π···π interactions between the sac moieties. The IR spectra and the thermal decomposition of the complex are also discussed.  相似文献   

14.
[Zn(Ofl) · (H2O)] · 2H2O (1) and [Co(Enox)2] · 4H2O (2) were obtained by hydrothermal reactions. The solid-state structures have been characterized by IR spectroscopy and single crystal X-ray diffraction analyses. Complex 1 crystallizes in the triclinic system, space group P 1, with lattice parameters a = 9.2923(5), b = 11.3432(6), c = 17.7722(10) Å, α = 92.839(3), β = 94.826(3), γ = 91.909(3)°, V = 1863.01(18) Å3, Z = 2, D Calcd = 1.494 mg m?3. The coordination environment around Zn2+ is a slightly distorted square pyramid. Complex 2 crystallizes in the triclinic system, space group P2(1)/c, with lattice parameters a = 5.97980(10), b = 21.4183(3), c = 13.1539(2) Å, V = 100.2810(10), Z = 2, D Calcd = 1.526 mg m?3, Co(II) ion is a distorted octahedral geometry.  相似文献   

15.
A layer silicate‐like zinc(II) benzimidazolate polymer {[Zn2(Bim)3(OH)(H2O)]·(DMF)(H2O)3} ( 1 ) was synthesized at room temperature and characterized with X‐ray single‐crystallography: Monoclinic, space group C2/m (No.12), a = 10.423(3) Å, b = 17.416(6) Å, c = 16.583(5) Å, β = 92.698(4), V = 3006.8(17) Å3.  相似文献   

16.
The complexation reaction between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane ligand (Kryptofix5) and Zn2+, Ni2+, Co2+, Pb2+ and Cu2+ ions were studied conductometrically in acetonitrile solution. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance and absorbance measurements in various mole ratios. The enthalpy and entropy changes of the complexation reactions were derived from titration conductometry in acetonitrile at various temperatures. At 25 °C, the stability of the resulting complexes varied in the order Pb2+ > Zn2+ > Cu2+> Co2+> Ni2+.  相似文献   

17.
钟克利  邓隆隆  郭佳  张强  侯淑华  边延江  汤立军 《化学通报》2018,81(12):1110-114,1120
本文利用2-氨基吡啶与4-二乙胺基水杨醛反应合成了5-二乙胺基-2-(吡啶-2’-亚氨甲基)苯酚(探针L),对其结构进行了表征。在DMSO/Tris(6:4, v/v, pH =7.4)溶液中,探针L高选择性荧光“关-开”识别Zn2+,在365 nm紫外灯照射下,由无荧光变成蓝色荧光。实验表明,探针L与Zn2+的结合比为1:1,结合常数为2.6×103 L. mol-1,检测限为 9.39×10-7mol/L,pH适用范围为7-11,并可检测水样中的Zn2+。  相似文献   

18.
New Ternary Germanides: The Compounds Ln 4Zn5Ge6 ( Ln : Gd, Tm, Lu) Three new ternary germanides were prepared by heating mixtures of the elements. Gd4Zn5Ge6 (a = 4.249(3), b = 18.663(17), c = 15.423(6) Å), Tm4Zn5Ge6 (a = 4.190(1), b = 18.410(5), c = 15.105(5) Å), and Lu4Zn5Ge6 (a = 4.179(1), b = 18.368(4), c = 15.050(3) Å) are isotypic and crystallize in a new structure type (Cmc21; Z = 4), composed of edge‐ and corner‐sharing ZnGe4 tetrahedra. The rare‐earth atoms fill channels of the Zn,Ge network running along the a axis and predominantly have an octahedral coordination of Ge atoms or a pentagonal prismatic environment of Zn and Ge atoms. The ZnGe4 tetrahedra are orientated to each other so that two of six Ge atoms form pairs, while the other ones have no homonuclear contacts. This is in accord with an ionic splitting of the formula: (Ln3+)4(Zn2+)5(Ge3–)2(Ge4–)4. LMTO band structure calculations support the interpretation of bondings derived from interatomic distances. The metallic conductivity of these compounds expected from the electronic band structure was confirmed by measurements of the electrical resistance of Tm4Zn5Ge6.  相似文献   

19.
The sterically guided molecular recognition of nucleobases, phosphates, adenosine, and uridine nucleotides on Langmuir monolayers and Langmuir-Blodgett monolayers of amphiphilic mono- or bis(Zn2+-cyclen)s assembled on thiolated surfaces was investigated. The stepwise selective binding of metal ions, uracil, or phosphate by dicetyl cyclen monolayers with variously tuned structures at the air/water interface was corroborated by the measurements of the corresponding LB films deposited onto quartz crystals. Two types of recognition surfaces were fabricated from Zn2+-dicetyl cyclen. The surface covered with a complex preformed in the Langmuir monolayer was capable both of imide and of phosphate binding. The similar complex formed directly in an LB film on thiolated gold was inactive with respect to imide. The surface plasmon resonance measurements evidenced the stepwise assembly of complementary nucleotides on SAM/LB templates through consecutive phosphate-Zn2+-cyclen coordination. Base pairing between nucleotides resulted in a formation of A-U bilayers comprising two complementary monolayers. Finally, we report on SAM/LB patterns designed for divalent molecular recognition of uridine phosphate by amphiphilic bis(Zn2+-cyclen).  相似文献   

20.
The local structures and the g factors gi (i = x, y, z) for Ni3+ centers in Na2Zn(SO4)2·4H2O (DPPH) and K2Zn(SO4)2·6H2O (PHZS) crystals are theoretically studied by using the perturbation formulas of the g factors for a 3d7 ion with low spin (S = 1/2) in orthorhombically compressed octahedra. In these formulas, the contributions to g factors from both the spin-orbit coupling interactions of the central ion and ligands are taken into account, and the required crystal-field parameters are estimated from the superposition model and the local geometry of the systems. Based on the calculations, the Ni-O bonds are found to suffer the axial compression δz (or Δz) of about 0.111 Å (or 0.036 Å) along the z-axis for Ni3+ centers in DPPH (or PHZS) crystals. Meanwhile, the Ni-O bonds may experience additional planar bond length variation δx (≈0.015 Å) along x- and y-axes for the orthorhombic Ni3+ center in DPPH. The theoretical g factors agree well with the experimental data. The obtained local structural parameters for both Ni3+ centers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号