首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved – namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data  相似文献   

2.
Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors   总被引:5,自引:0,他引:5  
The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.  相似文献   

3.
A panel of 92 catechol-O-methyltransferase (COMT) inhibitors was used to examine the molecular interactions affecting their biological activity. COMT inhibitors are used as therapeutic agents in the treatment of Parkinson's disease, but there are limitations in the currently marketed compounds due to adverse side effects. This study combined molecular docking methods with three-dimensional structure-activity relationships (3D QSAR) to analyse possible interactions between COMT and its inhibitors, and to incite the design of new inhibitors. Comparative molecular field analysis (CoMFA) and GRID/GOLPE models were made by using bioactive conformations from docking experiments, which yielded q2 values of 0.594 and 0.636, respectively. The docking results, the COMT X-ray structure, and the 3D QSAR models are in agreement with each other. The models suggest that an interaction between the inhibitor's catechol oxygens and the Mg2+ ion in the COMT active site is important. Both hydrogen bonding with Lys144, Asn170 and Glu199, and hydrophobic contacts with Trp38, Pro174 and Leu198 influence inhibitor binding. Docking suggests that a large R1 substituent of the catechol ring can form hydrophobic contacts with side chains of Val173, Leu198, Met201 and Val203 on the COMT surface. Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity.  相似文献   

4.
A series of substituted naphthalimide and quinoline derivatives were designed, prepared and evaluated as potential inhibitors of OfHex1. Compound 3m was the most potent inhibitor with a Ki value of 0.34 μmol/L. Quinoline analogs with an intramolecular N-H hydrogen bond mimiced the naphthalimide configuration to maintain the inhibitory activity potency.  相似文献   

5.
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of −OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.  相似文献   

6.
7.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

8.
9.
10.
11.
12.
13.
Depression is a critical mood disorder that affects millions of patients. Available therapeutic antidepressant agents are associated with several undesirable side effects. Recently, it has been shown that Neurokinin 1 receptor (NK1R) antagonists can potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs). In this study, a series of phenyl piperidine derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors were applied to quantitative structure–activity relationship (QSAR) analysis. A collection of chemometrics methods such as multiple linear regression (MLR), factor analysis–based multiple linear regression (FA-MLR), principal component regression (PCR), and partial least squared combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations between structural characteristics and NK1R antagonism/SERT inhibitory of these compounds. The best multiple linear regression equation was obtained from GA-PLS and MLR for NK1R and SERT, respectively. Based on the resulted model, an in silico-screening study was also conducted and new potent lead compounds based on new structural patterns were designed for both targets. Molecular docking studies of these compounds on both targets were also conducted and encouraging results were acquired. There was a good correlation between QSAR and docking results. The results obtained from validated docking studies indicate that the important amino acids inside the active site of the cavity that are responsible for essential interactions are Glu33, Asp395 and Arg26 for SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82 for NK1R receptors.  相似文献   

14.
The development of selective lymphocyte‐specific kinase (Lck) inhibitors has attracted much attention for the research of the treatment of T‐cell mediated autoimmune and inflammatory diseases. In the present work, three‐dimensional quantitative structure–activity relationship (3D‐QSAR) analyses are performed on a novel series of 4‐amino‐6‐benzimidazole‐pyrimidines acting as Lck inhibitors. The established 3D‐QSAR models show significant statistical quality and satisfactory predictive ability, with high q2 and R2 values: the comparative molecular field analysis (CoMFA) model (q2 = 0.802, R2 = 0.991), and the comparative molecular similarity indexes analysis (CoMSIA) model (q2 = 0.731, R2 = 0.982). The systemic external validation indicates that both CoMFA and CoMSIA models are quite robust and possess high predictive abilities with values of 0.881 and 0.877, values of 0.897 and 0.847, values of 0.897 and 0.850, and values of 0.897 and 0.854, respectively. Several key structural features accounting for the inhibitory activities of these compounds are discussed. Based on established models and design considerations, six new compounds with significantly improved activities are theoretically designed, which still await experimental confirmation and evaluation. These theoretical results may provide a useful reference for understanding the action mechanism and designing novel potential Lck inhibitors. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has a critical negative regulatory role in T-cell antigen receptor (TCR) and emerged as a promising drug target for human autoimmune diseases. A five-point pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and two aromatic ring features was generated for a series of benzofuran salicylic acid derivatives as LYP inhibitors in order to elucidate their anti-autoimmune activity. The generated pharmacophore yielded a significant 3D-QSAR model with r2 of 0.9146 for a training set of 27 compounds. The model also showed excellent predictive power with Q2 of 0.7068 for a test set of eight compounds. The investigation of the 3D-QSAR model has revealed the structural insights which could lead to more potent analogues. The most active and inactive compounds were further subjected to electronic structure analysis using density functional theory (DFT) at B3LYP/3?21?G level to support the 3D-QSAR predictions. The results obtained from this study are expected to be useful in the proficient design and development of benzofuran salicylic acid derivatives as inhibitors of LYP.  相似文献   

16.
17.
18.
Hydroxamic acid derivatives with metal ion binding properties were collected from the literature to generate a pharmacophore and 3D-QSAR model for HIV strand transfer inhibition. The derived pharmacophore model (AAAHRR) recognizes both metal ion binding site and hydrophobic group. The QSAR model generated using this hypothesis expressed statistical significance (r 2 = 0.971 for the training set and q 2 = 0.913 for the test set). The ability of this pharmacophore model to retrieve other metal ion binding inhibitors was examined by screening the ChemBank database (ligandinfo) incorporated with 10 known strand transfer inhibitors. The studied favourable and unfavourable contours of chemical features (H-bond donor, acceptor and hydrophobic sites) revealed the role of hydrophobic substitution at the fluorobenzene ring and cyclization of the metal ion binding hydroxamic acid in effective integrase inhibition. Analysis of the frontier orbitals, HOMO and LUMO revealed that the nucleophilic / electrophilic interactions depend on the significant overlapping observed at the azaindole and hydroxamic acid groups. In essence, the generated pharmacophore model is competent enough to disclose the essential site-specific interactions involved in the inhibition of HIV integrase, and hence can be used in virtual screening to identify novel scaffolds as leads with increased anti-viral potency.  相似文献   

19.
In the present work, a set of ligand‐ and receptor‐based 3D‐QSAR models were developed to explore the structure–activity relationship of 109 benzimidazole‐based interleukin‐2‐inducible T‐cell kinase (ITK) inhibitors. In order to reveal the requisite 3D structural features impacting the biological activities, a variety of in silico modeling approaches including the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking, and molecular dynamics were applied. The results showed that the ligand‐based CoMFA model (Q2 = 0.552, R2ncv = 0.908, R2pred = 0.787, SEE = 0.252, SEP = 0.558) and CoMSIA model (Q2 = 0.579, R2ncv = 0.914, R2pred = 0.893, SEE = 0.240, SEP = 0.538) were superior to other models with greater predictive power. In addition, a combined analysis between the 3D contour maps and docking results showed that: (1) Compounds with bulky or hydrophobic substituents near ring D and electropositive or hydrogen acceptor groups around rings C and D could increase the activity. (2) The key amino acids impacting the receptor–ligand interactions in the binding pocket are Met438, Asp500, Lys391, and Glu439. The results obtained from this work may provide helpful guidelines in design of novel benzimidazole analogs as inhibitors of ITK. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
醛酮还原酶1C3(AKR1C3)作为治疗前列腺癌的新靶点已成为研究热点,3-氨磺酰苯甲酸衍生物对其具有高效的选择性和抑制活性。本文采用比较分子场分析(COMFA)和比较分子相似性指数分析(COMSIA)方法,将经分子对接后的34个优势构象组成训练集和11个优势构象组成测试集,构建三维定量构效关系(3D-QSAR)模型。COMFA模型的交叉验证系数(q2),非交叉验证系数(R2),标准偏差(SEE)和F值分别为0.761,0.973,0.122,185.963;自举法回归系数为R2bs=0.98。最佳组合COMSIA模型的q2,R2,SEE,F和R2bs分别为0.734,0.984,0.097,147.850,0.994。COMFA和COMSIA模型的系统外部测试R2pred分别为0.864和0.756,r2m分别为0.8127和0.5377。这些结果表明,所建立的QSAR模型具有较高的可靠性和较强预测能力。经三维等势图分析可知,在2、5或6位适当增加取代基体积,或在5位引入氢键受体,或在7位引入负电性取代基则能提高化合物的生物活性。该模型为进一步设计具有更优选择性和活性的化合物提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号