首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 μg L−1 with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 μg mL−1 was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.  相似文献   

2.
An analytical method for the determination of inorganic arsenic in fish samples using HPLC-ICP-MS has been developed. The fresh homogenised sample was subjected to microwave-assisted dissolution by sodium hydroxide in ethanol, which dissolved the sample and quantitatively oxidised arsenite (As(III)) to arsenate (As(V)). This allowed for the determination of inorganic arsenic as a single species, i.e. As(V), by anion-exchange HPLC-ICP-MS. The completeness of the oxidation was verified by recovery of As(V) which was added to the samples as As(III) prior to the dissolution procedure. The full recovery of As(V) at 104±7% (n=5) indicated good analytical accuracy. The uncertified inorganic arsenic content in the certified reference material TORT-2 was 0.186±0.014 ng g–1 (n=6). The method was employed for the determination of total arsenic and inorganic arsenic in 60 fish samples including salmon from fresh and saline waters and in plaice. The majority of the results for inorganic arsenic were lower than the LOD of 3 ng g–1, which corresponded to less than one per thousand of the total arsenic content in the fish samples. For mackerel, however, the recovery of As(III) was incomplete and the method was not suited for this fat-rich fish.  相似文献   

3.
Concentrations of arsenic and bromine dissolved in hot spring waters have been determined by neutron activation analysis using 0.5 cm3 of sample waters without any chemical pretreatment. The samples prepared for neutron irradiation were simply pieces of filter papers which were infiltrated with samples. With the results of satisfactorily high accuracy and precision, this analytical method was found to be very convenient for the determinations of arsenic and bromine dissolved in water at ppm to sub-ppm levels.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78 ± 0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours.  相似文献   

5.
Epithermal instrumental neutron activation analysis (EINAA) together with both conventional and anti-coincidence counting techniques were used to analyze six different gold tailing samples from Ghana for Au and As. The method involves the use of the epi-cadmium site of the Dalhousie University Slowpoke-2 reactor facility for the irradiation of the samples. After irradiation, the samples were counted directly on the detectors. The identification and quantification of the elements were done using 411 keV photopeak of 198Au and both 559 keV and 657 keV photopeaks of 76As. The precision and accuracy of the method were evaluated. Values for Au in the samples ranged from 2.48 ppm and 6.76 ppm and for As between 1,550 ppm and 3,460 ppm. The values obtained using the two counting systems were in good agreement while the anti-coincidence counting system gave values of higher precision and accuracy. The detection limit for Au were 20 and 10 ppb for the conventional and anti-coincidence spectrometric systems, respectively, and 50 ppb for As in both cases. Details of the method and results are presented.  相似文献   

6.
Arsenic in drinking water affects millions of people around the world. While soluble arsenic is commonly measured, the amount of particulate arsenic in drinking water has often been overlooked. We report here determination of the acid-leachable particulate arsenic and soluble arsenicals in well water from an arsenic-poisoning endemic area in Inner Mongolia, China. Water samples (583) were collected from 120 wells in Ba Men, Inner Mongolia, where well water was the primary drinking water source. Two methods were demonstrated for the determination of soluble arsenic species (primarily inorganic arsenate and arsenite) and total particulate arsenic. The first method used solid phase extraction cartridges and membrane filters to separate arsenic species on-site, followed by analysis of the individual arsenic species eluted from the cartridges and filters. The other method uses liquid chromatography separation with hydride generation atomic fluorescence detection to determine soluble arsenic species. Analysis of acidified water samples using inductively coupled plasma mass spectrometry provided the total arsenic concentration. Arsenic concentrations in water samples from the 120 wells ranged from <1 to ∼1000 μg L−1. On average, particulate arsenic accounted for 39 ± 38% (median 36%) of the total arsenic. In some wells, particulate arsenic was six times higher than the soluble arsenic concentration. Particulate arsenic can be effectively removed using membrane filtration. The information on particulate and soluble arsenic in water is useful for optimizing treatment options and for understanding the geochemical behavior of arsenic in groundwater.  相似文献   

7.
Gold has been mined on a large scale at Yellowknife located in the sub-arctic North West Territories of Canada since 1938. The gold is associated with arsenopyrite ores, with necessitates the oxidation of the arsenic and sulphur by roasting at two Yellowknife smelters. Other metals are also present in the ore, notably antimony. As2O3 and SO2 are emitted into the atmosphere. Large quantities of arsenic were liberated in the past and despite improvements in emission control, significant emission still occur. In order to assess the amount and extent of arsenic contamination in the local environment and the potential exposures and sources to man, soil samples and samples of the native vegetation were collected in and around the town of Yellowknife and the two smelters. Arsenic and antimony analyses were done by instrumental neutron activation analysis using the SLOWPOKE facility at University of toronto. Air-dried plant samples were bombarded at a neutron flux of 1·1012n cm2s and soil samples at 2.5·1011n cm2s for 6 minute periods. The122Sb and76As-ray emissions at 559 keV were analysed after decay periods of 24–48 hours and compared with standard solutions and NBS standards. Zinc, copper, lead and cadmium analyses were done by atomic absorption spectrophotometry. Arsenic was found to be accumulated in the soils in the vicinity of the two smelters to levels of several thousand ppm. Concentrations greater than 500 ppm occurred in the soil of Yellowknife townsite, and greater than 50 ppm occurred at all sites sampled within 15 km of the town. Antimony levels were about 10% of arsenic and were highly correlated with arsenic. Zinc occurred to 500 ppm around the smelters. Compared with background levels, the foliage of several native species showed substantial arsenic accumulation, up to several hundred ppm in birch. Only 5–25% of this arsenic could be removed by careful washing. Evidence suggests the arsenic is taken up from the soil creating an ongoing arsenic contamination problem. Soil arsenic levels are also sufficiently high to inhibit root growth in soils over a very extensive area.  相似文献   

8.
Arsenic is considered a worldwide pollutant that can be present in drinking water. Arsenic exposure is associated with various diseases, including cancer. Antioxidants as selenite and α-tocopherol-succinate have been shown to modulate arsenic toxic effects. Since changes in STAT3 and PSMD10 gene expression have been associated with carcinogenesis, the aim of this study was to evaluate the effect of arsenic exposure and co-treatments with selenite or α-tocopherol-succinate on the expression of these genes, in the livers of chronically exposed Syrian golden hamsters. Animals were divided into six groups: (i) control, (ii) chronically treated with 100 ppm arsenic, (iii) treated with 6 ppm α-tocopherol-succinate (α-TOS), (iv) treated with 8.5 ppm selenite, (v) treated with arsenic + α-TOS, and (vi) treated with arsenic + selenite. Urine samples and livers were collected after 20 weeks of continuous exposure. The urine samples were analyzed for arsenic species by atomic absorption spectrophotometry, and real-time RT-qPCR analysis was performed for gene expression evaluation. A reduction in STAT3 expression was observed in the selenite-treated group. No differences in PSMD10 expression were found among groups. Histopathological analysis revealed hepatic lymphocytosis in selenite-treated animals. As a conclusion, long-term exposure to arsenic does not significantly alter the expression of STAT3 and PSMD10 oncogenes in the livers of hamsters; however, selenite down-regulates STAT3 expression and provokes lymphocytosis.  相似文献   

9.
Arsenic speciation in a brown alga, Fucus gardneri, collected in Vancouver, B.C., Canada, was carried out by using high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC–ICP–MS). Hydride generation–atomic absorption spectrometry (HG–AAS) was used for total arsenic determination. The relative amounts of some arsenosugars 1 in growing tips are found to be different in comparison with the remainder of the plant. Fucus samples collected in summer contain 9 ppm of total arsenic. Most of the arsenic species are extractable. Fucus samples collected in winter contain relatively higher amounts of arsenic, 16–22 ppm, but only low amounts of this are extractable. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
In order to describe the occurrence and to investigate the sources of arsenic found in Chautauqua Lake sediments, 98 grab samples have been analyzed by neutron activation analysis. The arsenic concentrations were found to range from <0.5 to 58.75 ppm for 96 of the 98 samples with an overall average value of 22.10 ppm. The two other samples had concentrations of 140.0 and 306.0 ppm. High arsenic concentrations have been positively correlated with a decrease in the sediment particle size. Natural arsenic concentrations found in the soil and bedrock in the area do not explaint the observed concentrations in the lake sediment. The increase in arsenic appears to be related to the spraying of sodium arsenite as an aquatic pesticide during the period 1955–1963.  相似文献   

11.
Zusammenfassung Ein einfaches Verfahren zur Bestimmung des Fluorgehaltes in Harn- und Serumproben sowie in Knochenmaterial unter Verwendung einer fluorspezifischen Elektrode wurde beschrieben. Die Nachweisgrenze liegt für die direkte Messung der Harn- und Serumproben bei einem Fluorgehalt von 0,05 ppm, für die Bestimmung in Knochengewebsproben, je nach Größe der Biopsieprobe, bei ca. 5 ppm. Die Abweichung vom Sollwert sowie die Reproduzierbarkeit dieser Methode kann auf etwa ± 10% geschätzt werden.Die an verschiedenen Personengruppen durchgeführten Untersuchungen haben im Normalfall einen Fluorgehalt im Harn von 0,32±0,21 ppm gezeigt. Bei einer Gruppe von Kindern im Alter bis zu 10 Jahren wurde ein deutlich niedrigerer Gehalt von 0,12±0,07 ppm festgestellt. Die Fluorkonzentration im Serum erwachsener Personen liegt zwischen 0,08 und 0,13g/ml. In der Knochensubstanz erreicht der Fluorgehalt Werte von ca. 100 ppm. Im Falle eines Fluorosekranken ergab die Bestimmung im Harn eine Erhöhung auf das 10fache und im Knochen auf mehr als das 40fache.
The determination of fluoride in urine, serum and bone samples using a specific fluoride electrode
Summary The detection limit is depending on the sample size, generally about 0.05 ppm fluoride can be determined in urine and 5 ppm in bones. The accuracy as well as the reproducibility of this method can be given with ±10%.Investigations on some different persons have shown fluoride contents in urine normally about 0.32±0.21 ppm for adults and of 0.12±0.07 ppm for children up to 10 years old. The fluoride concentrations in serum samples of adults are ranging from 0.08 to 0.13g/ml.In bone values up to 100 ppm fluoride are found. In the case of a fluorose patient, F-contents of 2.5–3.4 ppm in urine and 4320 ppm in bone samples were found.


Herrn Professor Dr. Hans Lieb zum 90. Geburtstag gewidmet.  相似文献   

12.
A novel arsine generator glass assembly is constructed and reported for the spectrophotometric determination and speciation of arsenic in real samples. In an arsine generator, sodium borohydride is added dropwise to the acidic sample solution and arsine thus formed is reacted with silver diethyldithiocarbamate (Ag‐DDTC) ‐ Tritron‐X (TX‐100) solution in pyridine to form a red coloured complex. The complex showed the absorption maximum at λmax 540 nm. The molar absorptivity of the method was found to be (1.55) × 104 L mole?1 cm?1 at this wavelength. The presence of non‐ionic surfactant, i.e. TX‐100 in the Ag‐DDTC solution, makes the method ≈ 3 times more sensitive than the conventional Ag‐DDTC method. Beer's law is obeyed in the concentration range of 0.05–2.80 mg L?1 of arsenic. The detection limit of the method was calculated to be 20 μg L?1 As. Speciation of arsenite from other forms of arsenic in sample solutions was carried out by extraction of arsenite with Pb‐DDTC in chloroform, followed by spectrophotometric determination. After arsenite separation the sample is used for the arsenate determination. Total arsenic was determined by acid decomposition of the same sample. The speciation data were found to be comparable (±2%) with ICP‐MS, with better precision (< 1%). The method has been successfully applied for the speciation of arsenic in drinking water and dust samples of arsenic affecting the Rajnandgaon district of Chhattisgarh, India, and urine and blood samples of patients with arsenical diseases. Concentration of total arsenic in tube‐well water of this area was 3–6 times more than the permissible limit. Dust samples contained less amounts of arsenic than the ground water.  相似文献   

13.
Results of a thorough study and application of leucocrystal violet for the determination of arsenic in parts per million (ppm) levels in environmental and biological samples is described here. The proposed method is based on the reaction of arsenic with potassium iodate to liberate iodine. The liberated iodine selectively oxidises leucocrystal violet to form crystal violet dye in the presence of sodium hydroxide. The dye formed shows maximum absorbance at 592 nm. The detection limit of arsenic is 0.002 μgmL?1 and the method obeys Beer's law over the concentration range of 0.1 μg - 1.0 μg of per 25 mL of final solution (0.004–0.04 ppm). The molar absorptivity was found to be 1.49 × 106 L mol?1 cm?1. The proposed method was successfully applied for the determination of arsenic in various environmental and biological samples. The results are in good agreement with the standard reported method.  相似文献   

14.
In order to investigate the arsenic level in serum and packed cells of patients with renal insufficiency, total arsenic (As) concentrations were determined with hydride generation atomic absorption spectrometry (HGAAS) in serum (S) and packed cells (PC) of 31 non-dialyzed patients. The accuracy of the method was tested by the analysis of arsenic in 3 certified reference materials. Patients showed a three-fold increase of arsenic concentrations in serum and a two-fold increase of arsenic in packed cells compared with controls. Patients (n=10) with higher serum creatinine (>2.0 mg/dL), urea (>0.70 g/L) and urinary protein (mean ±SD: 1.12±0.82 g/L) showed higher arsenic concentrations (5.8±3.3 g/L in serum and 18.0±16.7 g/kg in packed cells) compared with those with lower creatinine (<1.6 mg/dL), urea (<0.6 g/L) and urinary protein (mean ±SD: 0.27±0.82 g/L) (n=16, serum arsenic 1.2±1.2 g/L, packed cells arsenic 2.6±1.9 g/kg). The significant differences (both p<0.001) in S and PC-arsenic levels of patients in group I and II implies a relationship between the arsenic level and the degree of chronic renal insufficiency.Dedicated to Professor Dr. Peter Brätter on the occasion of his 60th birthday  相似文献   

15.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

16.
The ISO 25101 (International Organization for Standardization, Geneva) describes a new international standard method for the determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in unfiltered samples of drinking and surface waters. The method is based on the extraction of target analytes by solid phase extraction, solvent elution, and determination by high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). For the determination of the performance of this method, more than 20 laboratories from 9 different countries participated in an inter-laboratory trial in 2006. In addition, inter-laboratory trials were conducted in 2008 and 2009 for the analysis of perfluoroalkylsubstances (PFASs), including PFOS and PFOA, in water samples by following the protocols of Japanese Industrial Standard (JIS). Overall, the repeatability coefficients of variation (i.e., within-laboratory precision) for PFOS and PFOA in all water samples were between 3 and 11%, showing a adequate precision of the ISO and JIS methods. The reproducibility coefficients of variation (i.e., between-laboratory precision) were found to vary within a range of 7–31% for surface water and 20–40% for wastewater. The recoveries of PFOS and PFOA, as a measure of accuracy, varied from 84 to 100% for surface water and from 84 to 100% for wastewater among the samples with acceptable criteria for internal standards recovery. The determined concentrations of PFASs in samples compared well with the “true” values. The results of the inter-laboratory trial confirmed that the analytical methods are robust and reliable and can be used as a standard method for the analysis of target compounds in water samples.  相似文献   

17.
Böning P  Schnetger B 《Talanta》2011,85(3):1695-1697
We present a method for the rapid and direct determination of dissolved Thallium (Tl) using high resolution sector field inductively coupled mass spectrometry (SF-ICP-MS) suitable for the measurement of large time series (e.g. during monitoring). Thallium data are presented for a series of natural sea water samples, which were validated with sea water standards CASS-4 and NASS-5. The sea water samples and standards were diluted 10 times prior to measurement with SF-ICP-MS in low resolution mode (R = 300, LR). For both CASS-4 and NASS-5 (salinity of 30.5) we calculated a concentration of about 11 ng L−1 when using Tl values of 14 ± 2 ng L−1 (at salinity of 35 ± 1) published by Flegal and Patterson [1] for Atlantic and Pacific sea water. For CASS-4 we report a Tl value of 10.6 ± 0.7 ng L−1 (n = 70), for NASS-5 a Tl value of 10.3 ± 0.8 ng L−1 (n = 11). For Tl in both CASS-4 and NASS-5, the overall error in accuracy and precision is less than 4% and 8% (2 s), respectively. Further, values of 7.7 ± 0.3 and 6.7 ± 0.2 ng L−1 Tl were found for the estuarine standard SLEW-3 (salinity of 15) and the river water standard SLRS-4, respectively, for which no certified value exists so far. The detection and quantification limits of our method are 0.1 and 0.3 ng L−1, respectively. Slight differences in the accuracy of our method and other published methods for the determination of Tl in sea water are discussed. Time-series of natural coastal water samples gave Tl values (6-12 ng L−1), which correspond to determined salinities, and hence, appear realistic and oceanographically consistent.  相似文献   

18.
This study was carried out to determine fluoride in drinking water and in urine of adolescents, ages 15-20 years, living in Northern Chihuahua Mexico. Participants are from a cross-sectional study on health effects of chronic fluoride exposure from drinking water. A total of 201 participants (106 female and 95 male) in the study were recruited from three counties. Samples of drinking water of each county were collected and analyzed using the U.S. EPA Fluoride Ion-Selective Method. Statistically significant difference of fluoride content in water was found among the three counties of recruitment (Cd. Juarez; 0.3 mg/L, Samalayuca, 1.0 mg/L, and Villa Ahumada, 5.3 mg/L). Fluoride content in wells and tap water samples of Villa Ahumada ranged from 5.0 to 5.7 mg/L. Fluoride content of these samples was above the level permitted by Mexican regulations. The fluoride content in bottled water obtained from local stores in Villa Ahumada ranged from 0.3 to 3.7 mg/l.Fluoride in urine samples of each participant was also analyzed using the U.S. EPA Ion-Selective Method. The mean fluoride urine concentration (reported in mg/g creatinine) in adolescents living in these counties was 0.792±0.39, 1.33±0.67 and 2.22±1.16 (Cd. Juarez, Samalayuca and Villa Ahumada), respectively. The high fluoride urinary levels found in participants from Villa Ahumada may be associated to the high fluoride level (5.3 mg/L) in dinking water.The accuracy of measurements was assessed with reference materials in water and in urine. Mean fluoride recovery was 99.0% and 99.6% in water and in urine, respectively. The levels obtained were within the assayed 5% confidence levels.  相似文献   

19.
Anderson SL  Pergantis SA 《Talanta》2003,60(4):821-830
The toxicity of certain elements is known to be related to their organic substituents and/or oxidation states. As such, total elemental determinations do not always yield sufficient information for accurate risk assessments and therefore speciation or fractionation data are required. In order to obtain fractionation data for trace levels of arsenic and selenium, a novel sequential pneumatic nebulisation (PN)/hydride generation (HG) inductively coupled plasma mass spectrometry (ICP-MS) method was developed. The method offers the advantage of sample introduction via either PN or HG by simply rotating a 4-way switching valve while the system is in operation. In PN mode, the liquid sample is aspirated into ICP, allowing for the determination of the total amount of each element, whilst in HG mode only the arsenic and selenium species that form volatile hydrides are determined. Conveniently, in the case of arsenic, this allows for differentiation between the four most toxic arsenic species (arsenate, arsenite, monomethylarsonic acid and dimethylarsinic acid), which form volatile hydrides, and the virtually non-toxic forms (arsenobetaine, arsenosugars, etc.), which do not. This allows for the rapid estimation of the amounts of toxic and non-toxic arsenic species present in a sample. For arsenic, the technique gave detection limits of 36 ng l−1 in PN mode and 1 ng l−1 in HG mode. For selenium, detection limits of 150 ng l−1 were achieved in PN mode and 220 ng l−1 in HG mode. The technique also gave good long- and short-term stabilities of under 6% RSD for both elements. A variety of samples, including water and urine standard reference materials, were analysed in both modes, and the precision and accuracy of the results for total arsenic and selenium levels were assessed. Using the technique in both modes also allowed for the fractionation of As and Se species into their volatile hydride-forming and non-hydride-forming species. This was particularly informative, with respect to As species present, in the case of a kelp powder extract. Digested tobacco samples were only analysed for their total As levels, in which case results obtained via both sample introduction modes showed good agreement.  相似文献   

20.
Arsenic is toxic to humans with the lethal dose being approximately 1 mg/kg/day. At much lower long-term exposures, arsenic is hypothesized to increase the risk of certain cancers. We have developed an irradiation position for the neutron activation analysis (NAA) of nail specimens for arsenic, in support of a case-control study involving New Hampshire residents consuming well water above the EPA Safe Drinking Water Standard of 0.050 ppm. Arsenic is bound to nail keratin through sulfhydryl groups proportional to intake providing a convenient means of integrating arsenic intake in population-based studies. Our objective was to develop the necessary facilities and procedures by which relatively small samples (i.e. 20 to 100 mg) could be accurately analyzed for arsenic, so that affordable nutritional epidemiology investigations, requiring large numbers of samples (>1000 in this case), could be undertaken. A high-flux reflector position, with minimal axial variation throughout the fuel cycle, suitable for pneumatic-tube irradiations, was characterized by measurement of the neutron flux distribution (thermal and epithermal) within the irradiation capsule over time. Results from application of the method to a case-control study of basal and squamous cell skin cancer will be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号