首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present high resolution angle resolved photoemission data of the bilayer superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) showing a clear doubling of the near E(F) bands. This splitting approaches zero along the (0,0)-->(pi,pi) nodal line and is not observed in single layer Bi(2)Sr(2)CuO(6+delta) (Bi2201), indicating that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 110 meV near the (pi,0) point. The existence of these two bands also helps to clear up the recent controversy concerning the topology of the Fermi surface.  相似文献   

2.
Using angle-resolved photoemission spectroscopy we have performed a detailed study of bilayer splitting in Bi2Sr2CaCu2O8+δ as a function of doping level and temperature. In heavily overdoped samples where the splitting is the clearest, we extract an intracell coupling t∼55 meV. As a function of photon energy the intensity ratio of the bonding and antibonding bands varies, allowing us to detect the bilayer splitting effect in the optimal and underdoped regimes. Surprisingly, with reduced doping the intracell coupling is not measurably reduced. Upon cooling to the superconducting state, a gap Δ opens in both bands yet the magnitude of the splitting remains unchanged.  相似文献   

3.
The low-energy electronic structure of the nearly optimally doped trilayer cuprate superconductor Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface and the superconducting d-wave gap and coherence peak are observed and compared with those of single- and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with T(c) for various optimally doped materials.  相似文献   

4.
We use microprobe angle-resolved photoemission spectroscopy (microARPES) to separately investigate the electronic properties of CuO2 planes and CuO chains in the high temperature superconductor, YBa2Cu4O8. For the CuO2 planes, a two-dimensional (2D) electronic structure is observed and, in contrast to Bi2Sr2CaCu2O8+delta, the bilayer splitting is almost isotropic and 50% larger, which strongly suggests that bilayer splitting has no direct effect on the superconducting properties. In addition, the scattering rate for the bonding band is about 1.5 times stronger than the antibonding band and is independent of momentum. For the CuO chains, the electronic structure is quasi-one-dimensional and consists of a conduction and insulating band. Finally, we find that the conduction electrons are well confined within the planes and chains with a nontrivial hybridization.  相似文献   

5.
High-resolution photoemission study of MgB2   总被引:1,自引:0,他引:1  
We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.  相似文献   

6.
Mou D  Liu S  Jia X  He J  Peng Y  Zhao L  Yu L  Liu G  He S  Dong X  Zhang J  Wang H  Dong C  Fang M  Wang X  Peng Q  Wang Z  Zhang S  Yang F  Xu Z  Chen C  Zhou XJ 《Physical review letters》2011,106(10):107001
High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58Rb0.42)Fe1.72Se2 superconductor with a T(c) = 32 K. The Fermi surface topology consists of two electronlike Fermi surface sheets around the Γ point which is distinct from that in all other iron-based superconductors reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of ~12 meV. The large Fermi surface near the Γ point also shows a nearly isotropic superconducting gap of ~15 meV, while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints into the understanding of the superconductivity mechanism in iron-based superconductors.  相似文献   

7.
We apply the new-generation angle-resolved photoemission spectroscopy methodology to the most widely studied cuprate superconductor YBa2Cu3O(6+x). Considering the nodal direction, we found noticeable renormalization effects known as kinks both in the quasiparticle dispersion and scattering rate, the bilayer splitting, and evidence for strong interband scattering--all the characteristic features of the nodal quasiparticles detected earlier in Bi2Sr2CaCu2O(8+delta). The typical energy scale and the doping dependence of the kinks clearly point to their intimate relation with the spin-1 resonance seen in the neutron scattering experiments. Our findings strongly suggest a universality of the electron dynamics in the bilayer superconducting cuprates and a dominating role of the spin fluctuations in the formation of the quasiparticles along the nodal direction.  相似文献   

8.
We report a detailed inelastic neutron scattering study of the collective magnetic excitations of overdoped superconducting La(1.78)Sr(0.22)CuO(4) for the energy range 0-160 meV. Our measurements show that overdoping suppresses the strong response present for optimally doped La(2-x)Sr(x)CuO(4) which is peaked near 50 meV. The remaining response is peaked at incommensurate wave vectors for all energies investigated. We observe a strong high-frequency magnetic response for E approximately >80 meV suggesting that significant antiferromagnetic exchange couplings persist well into the overdoped part of the cuprate phase diagram.  相似文献   

9.
Experimental support is found for the multiband model of the superconductivity in the recently discovered system MgB(2) with the transition temperature T(c) = 39 K. By means of Andreev reflection, evidence is obtained for two distinct superconducting energy gaps. The sizes of the two gaps ( Delta(S) = 2.8 meV and Delta(L) = 7 meV) are, respectively, smaller and larger than the expected weak coupling value. Because of the temperature smearing of the spectra the two gaps are hardly distinguishable at elevated temperatures, but when a magnetic field is applied the presence of two gaps can be demonstrated close to the bulk T(c) in the raw data.  相似文献   

10.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

11.
We present scanning tunneling spectroscopy measurements of the CuO chain plane in YBa(2)Cu(3)O(6+x), showing an approximately 25 meV gap in the local density of states (LDOS) filled by numerous intragap resonances: intense peaks in LDOS spectra associated with one-dimensional, Friedel-like oscillations. We discuss how these phenomena shed light on recent results from other probes, as well as their implications for phenomena in the superconducting CuO(2) plane.  相似文献   

12.
《Surface science》1988,206(3):L888-L894
Employing spin-resolved inverse photoemission we have observed an exchange splitting of the unoccupied oxygen-induced band in the chemisorption system (2 × 1)-O/Ni(110). At the centre of the surface Brillouin zone the splitting between the oxygen 2p-derived majority and minority band— referred to the magnetization vector of nickel-was found to be 80±20 meV. This effect is a manifestation of the strong magnetic correlation between the oxygen and nickel bands. The size of the splitting is surprising as earlier experimental work indicated a substantial reduction of the surface magnetization due to chemisorption. For the empty 2π1-derived band of CO on Ni(110) no such splitting has been observed.  相似文献   

13.
Scanning tunneling microscopy and spectroscopy measurements in the superconducting dichalcogenide 2H-NbS2 show a peculiar superconducting density of states with two well-defined features at 0.97 and 0.53 meV, located, respectively, above and below the value for the superconducting gap expected from the single band s-wave BCS model (Delta=1.76k_(B)T_(c)=0.9 meV). Both features have a continuous temperature evolution and disappear at T_(c)=5.7 K. Moreover, we observe the hexagonal vortex lattice with radially symmetric vortices and a well-developed localized state at the vortex cores. The sixfold star shape characteristic of the vortex lattice of the compound 2H-NbSe2 is, together with the charge density wave order, absent in 2H-NbS2.  相似文献   

14.
We observed the energy gap spectra for (TMTSF)2ClO4-Al2O3-Au junctions at 1.5 K by measuring their tunneling current characteristics. The superconducting gap was estimated to be less than 2 meV (Tc<6 K) which is much smaller than the previously reported value, 8 meV.  相似文献   

15.
二维拓扑绝缘体因其特殊的能带结构带来的新奇物理性质,成为近年来凝聚态物理的研究热点.尤其是在引入超导电性之后,二维拓扑绝缘体中可能存在马约拉纳费米子(Majorana fermion),因此在量子计算方面具有重大应用前景.在Bi(111)薄膜被证实为二维拓扑绝缘体之后, Bi(110)薄膜引起了广泛关注,然而其拓扑性质还存在争议.本文利用分子束外延技术在室温低生长速率环境下成功制备出了高质量的单晶Bi(110)薄膜.通过扫描隧道显微镜测量发现,薄膜以约8个原子层厚度为分界,从双层生长转变为单层生长模式.结合隧道谱测量发现,在NbSe_2衬底上生长的Bi(110)薄膜因为近邻效应而具有明显的超导性质,但并未显示出拓扑边缘态的存在.此外,对薄膜中特殊的量子阱态现象也进行了讨论.  相似文献   

16.
Angle resolved photoemission spectroscopy (ARPES) and resistivity measurements are used to explore the overdoped region of the high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta). We find evidence for a new crossover line in the phase diagram between a coherent metal phase, for lower temperatures and higher doping, and an incoherent metal phase, for higher temperatures and lower doping. The former is characterized by two well-defined spectral peaks in ARPES due to coherent bilayer splitting and superlinear behavior in the resistivity, whereas the latter is characterized by a single broad spectral feature in ARPES and a linear temperature dependence of the resistivity.  相似文献   

17.
Recent improvements in momentum resolution lead to qualitatively new angle-resolved photoemission spectroscopy results on the spectra of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. We now see the intrinsic line shape, which indicates the presence of true quasiparticles at all Fermi momenta in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.  相似文献   

18.
We present the c-axis optical conductivity sigma(1c)(omega,T) of underdoped (x=0.12) and optimally doped (x=0.15) La2-xSrxCuO4 from 4 meV to 1.8 eV obtained by a combination of reflectivity and transmission spectra. In addition to the opening of the superconducting gap, we observe an increase of conductivity above the gap up to 270 meV with a maximal effect at about 120 meV. This may indicate a new collective mode at a surprisingly large energy scale. The Ferrell-Glover-Tinkham sum rule is violated for both doping levels. Although the relative value of the violation is much larger for the under-doped sample, the absolute increase of the low-frequency spectral weight, including that of the condensate, is higher in the optimally doped regime. Our results resemble in many respects the observations in YBa(2)Cu(3)O(7-delta).  相似文献   

19.
Tao Xie 《中国物理 B》2021,30(12):127402-127402
We report an inelastic neutron scattering investigation on the spin resonance mode in the optimally hole-doped iron-based superconductor Ba0.67K0.33Fe2As2 with Tc=38.2 K. Although the resonance is nearly two-dimensional with peak energy ER≈14 meV, it splits into two incommensurate peaks along the longitudinal direction ([H, 0, 0]) and shows an upward dispersion persisting to 26 meV. Such dispersion breaks through the limit of total superconducting gaps tot=|k|+|k+Q|(about 11-17 meV) on nested Fermi surfaces measured by high resolution angle resolved photoemission spectroscopy (ARPES). These results cannot be fully understood by the magnetic exciton scenario under s±-pairing symmetry of superconductivity, and suggest that the spin resonance may not be restricted by the superconducting gaps in the multi-band systems.  相似文献   

20.
We have measured the Raman spectra of polycrystalline MgB2 from 25 to 1200 cm(-1). A superconductivity-induced redistribution in the electronic Raman continuum was observed. Two pair-breaking peaks appear in the spectra, suggesting the presence of two superconducting gaps. The measured spectra were analyzed using a quasi-two-dimensional model in which two s-wave superconducting gaps open on two sheets of Fermi surface. For the gap values we have obtained Delta(1) = 22 cm(-1) ( 2.7 meV) and Delta(2) = 50 cm(-1) ( 6.2 meV). Our results suggest that a conventional phonon-mediated pairing mechanism occurs in the planar boron sigma bands and is responsible for the superconductivity of MgB2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号