首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of dual chambered microbial fuel cell (MFC, Nafion 117, non-catalyzed graphite electrodes) in concurrence with anodic pH microenvironment was evaluated based on bioelectricity generation and wastewater treatment efficiency. Experiments were carried out at different anodic pH microenvironments (acidophilic (6), neutral (7) and alkaline (8)) using both aerated and ferricyanide catholytes with mixed consortia as anodic biocatalyst employing chemical wastewater. Acidophilic pH in anodic chamber showed effective performance with respect to power output compared to the corresponding neutral and alkaline operations. However, substrate degradation was observed to be higher at neutral condition followed by alkaline and acidophilic operations. Ferricyanide as catholyte showed positive influence on the power output parameters compared to aerated catholyte. Nature of the catholyte did not show any visible influence on the wastewater treatment efficiency.  相似文献   

2.
The anodic formation of manganese dioxide is studied voltammetrically in a wide range of potential scan rate (V = 0.001–8 V/s). Using the diagnostic criteria of cronovoltammetric method, based on the original experimental data, the mechanism of electrooxidation of manganese ions in the acidic medium with subsequent reaction of disproportionation of the product of irreversible electrode reaction and hydrolysis yielding manganese dioxide is proposed. The kinetics of cathodic reduction of electrolytic manganese dioxide in the 0.5 M Na2SO4 solution is studied under the steady-state and non-steady-state potentiodynamic polarization conditions. From the experimental data, it is found that, in the acidic medium (pH 1–3), the mechanism of the electrode process changes depending on the cathodic potential scan rate: at the scan rate V < 0.5 V/s, MnOOH forms via one-electron transition leading, in its turn, to the partial deactivation of electrode surface with subsequent disproportionation of manganite. At the relatively high potential scan rates, manganite has no time to form, and the two-stage reduction via one-electron transitions at each stage is well pronounced. The parameters of the electrode processes are calculated.  相似文献   

3.
《Journal of Energy Chemistry》2017,26(6):1187-1195
This work proposed a simple and efficient approach for synthesis of durable and efficient non-precious metal oxygen reduction reaction(ORR) electro-catalysts in MFCs. The rod-like carbon nanotubes(CNTs)were formed on the Fe–N/SLG sheets after a carbonization process. The maximum power density of1210 ± 23 m W·m~(-2) obtained with Fe–N/SLG catalyst in an MFC was 10.7% higher than that of Pt/C catalyst(1080 ± 20 mW ·m~(-2)) under the same condition. The results of RDE test show that the ORR electron transfer number of Fe–N/SLG was 3.91 ± 0.02, which suggested that ORR catalysis proceeds through a four-electron pathway. The whole time of the synthesis of electro-catalysts is about 10 h, making the research take a solid step in the MFC expansion due to its low-cost, high efficiency and favorable electrochemical performance. Besides, we compared the electrochemical properties of catalysts using SLG, high conductivity graphene(HCG, a kind of multilayer graphene) and high activity graphene(HAG, a kind of GO) under the same conditions, providing a solution for optimal selection of cathode catalyst in MFCs.The morphology, crystalline structure, elemental composition and ORR activity of these three kinds of Fe–N/C catalysts were characterized. Their ORR activities were compared with commercial Pt/C catalyst.It demonstrates that this kind of Fe–N/SLG can be a type of promising highly efficient catalyst and could enhance ORR performance of MFCs.  相似文献   

4.
Synthesis techniques for binary PtSn, PdM (M = Sn, V, Mo) and ternary PtSnNi, PtRuSn catalysts of ethanol electrooxidation on highly dispersed carbon materials are suggested. The highest activity in the 0.5 M H2SO4 solution containing 1 M C2H5OH corresponds to the system of PtSn (3: 1, 40 wt % Pt) with the particle size of 2–4 nm and tin content in the alloy with platinum of about 6%. It was shown that the catalyst efficiency as regards ethanol oxidation depth decreases in the series of Pt > PtRu ≈ PtSn, and the catalyst activity by current forms the series of PtSn > PtRu > Pt. The membrane-electrode assembly (MEA) with the anodes on the basis of the PtSn (3: 1, 40 wt % Pt) catalyst had stable characteristics for 220 h at the current density of ∼50 mA/cm2.  相似文献   

5.
The influence of the electrolyte composition and pH on the anodic currents obtained during electrochemical etching of p-type silicon in aqueous HF solutions has been investigated. Original and accurate pH measurements were performed to characterize the exact composition of the HF + H2O electrolytes commonly used. It is shown that for these very acid solutions (pH < 2) almost all fluoride is in the form of the non-dissociated HF species which appears to play a preponderant role in the silicon dissolution reaction kinetics. The effect of pH can be restricted to its influence on the modification of the different concentrations by shifting the equilibria.  相似文献   

6.
The effect of convective channel-to-channel mass flow on the local performance of a polymer electrolyte fuel cell (PEFC) air cathode is determined experimentally by using submillimeter resolved current density distribution measurements in channel and land areas. A special cell is employed, where the two parallel channels of the cathode flow field can be operated at different pressure. For isobaric operation of the channels (Δp = 0 mbar), the lateral current density distribution shows a distinct minimum in the land area between the channels as diffusive mass transport becomes limiting at a higher cell polarization. Toward higher Δp, the local cell performance in the land area improves initially as a result of an improving convective channel-to-channel mass flow. However, as the pressure difference exceeds a value of 10 mbar, no noteworthy additional benefit is observed with further increasing Δp. Under these conditions, the convective mass flow provides an abundant reactant supply in the land area and, since reactant depletion is no longer limiting, the lateral current density distribution is primarily governed by the local ohmic resistance. As a result, the current density exhibits a maximum in the land area, where the local ohmic resistance shows a minimum.  相似文献   

7.
8.
The classic silver diethyldithiocarbamate (SDDC) spectrophotometric procedure for arsenic determination has been used for investigation of the effect of cathodic electrolyte on the performance of electrochemical hydride generation (HG) from graphite cathode. The results of this study show that the presence of a soft metal ion such as Cd(II), Sn(II) and/or Zn(II) in the acidic cathodic electrolyte can increase effectively the efficiency of electrochemical hydride generation and decrease the effect of interferences. The possible mechanisms of these effects have been discussed in detail. The parameters related to the electrochemical hydride generation were investigated. Also the characteristic data of the electrochemical hydride generation and common hydride generation by NaBH4 were compared. Under optimised conditions, the system is selective to As(III) and total inorganic analyses can be performed after a pre-reduction stage prior to electrochemical hydride generation. This will allow the differential determination of inorganic arsenic species. The method is appropriate to the determination of 4-40 μg of each arsenic species.  相似文献   

9.
2,3-Diferrocenylbenzo[b]thiophene and 1,3-diferrocenylbenzo[c]thiophene have been systematically and selectively synthesized from benzo[b]thiophene and phthaloyl dichloride, respectively. Characterization of the molecules was performed by physical and spectroscopic means and X-ray crystallographic analyses. The cyclic voltammograms of the novel thiophene derivatives containing ferrocene fragments showed a well-defined reversible cathodic step derived from the unusually stable thiophene radical anions and two distinct reversible anodic steps derived from ferrocenium cations separated from each other by a thiophene heterocycle. 1,3-Diferrocenylbenzo[c]selenophene was also synthesized in a similar manner for formation of 1,3-diferrocenylbenzo[c]thiophene by the use of bis(dimethylaluminum) selenide as a selenating reagent.  相似文献   

10.
Electrocatalytic layers of a fuel cell-electrolyzing cell reversible system with solid polymer electrolyte are studied. The system may be used as both a dc generator and a water electrolyzing cell. It is shown that the way the polytetrafluoroethylene (PTFE) additive is introduced into the cathode’s catalytic layer affects the cathode performance. The PTFE introduction in the form of suspension in an alcohol solution of MF-4SK polymer enhanced performance. Characteristics of platinum, iridium, and platinum-iridium anode catalysts are compared. The best characteristics are obtained using a composition based on platinum black and iridium black, applied layer-by-layer, with an iridium-black layer facing the surface of a solid-polymer membrane.  相似文献   

11.
Effects of sulfamate-citrate electrolyte pH on the cathodic polarization, content of W in Ni-W alloys, and crystallite grain size are studied by cyclic voltammetry, scanning electron microscopy, and energy dispersion spectroscopy. It is shown that a medium pH has the determining effect on the electrolyte and deposit properties; in a neutral medium, properties of deposits are optimal. A unique dependence of the microhardness on the alloy’s composition is found.  相似文献   

12.
The rates of direct and concert passages of nuclei through a potential barrier in an external periodic field were determined within a generalized Slater model of thermal dissociation of multiatomic molecules. The external field accelerated direct and — to a much greater degree — concert passages. The curves of the efficiency of the concert mechanism of the chemical reaction as a function of the field amplitude were estimated.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 2, pp. 127–132, March–April, 1993.  相似文献   

13.
This study used a simple and efficient electrochemical technique, cyclic voltammogram (CV), to quantitatively measure the electron transfer capability of anodic biofilms enriched with acetate and glucose in single-chamber microbial fuel cells (MFCs). Two pairs of distinct redox peaks were observed by CV measurements in both biofilms, identical to the CV features of a pure Geobacter strain. The CVs also revealed a higher density of electroactive species in the acetate-enriched biofilm than that in the glucose-enriched biofilm. Based on the scan rate analysis, the apparent electron transfer rate constants (k(app)) in the acetate-enriched biofilm and glucose-enriched biofilm were determined to be 0.82 and 0.15s(-1), respectively, which supported the higher power output of the MFC fed with acetate. Meanwhile, the pH dependence of the biofilms was studied by monitoring the changes of the biofilm redox peak currents and potentials. It is concluded that redox reaction of the electrochemical active species in biofilms is pH dependent, and both electrons and protons are involved in the redox reactions.  相似文献   

14.
The carbon dioxide reforming of methane in a cell with a solid oxygen-conducting electrolyte:
has been studied. The effect of anodic current (or electrochemical oxygen pumping to the reaction zone) on the catalytic properties of the Pt electrode for CO2−CH4 reaction is discussed.  相似文献   

15.
Microbial fuel cell (MFC) technology is a novel electricity generation process catalyzed by microorganisms. Much progress is made in the design and construction of MFCs, however the diversity of the electrochemically active microorganisms and the electricity generation mechanisms remain a black box. As sun is a predominantly unused energy resource, here we present a highly enriched phototrophic consortium that can produce electricity in an “H” typed MFC at a high power density (2650 mW m−2, normalized to membrane area) in light, which was eightfold of that produced by non-enriched consortium in the same reactor. Light–dark shift experiments showed that light contributed to the electricity generation. A microbial excreted mediator assisted the electron transfer to the electrode. During the experiment, the accumulation of the mediator over time enhanced the electron transfer rate. The excitation–emission matrix fluorescence spectroscopy results indicated indole group containing compound representing the dominant mediator component.  相似文献   

16.
Platinum and/or metal‐oxide nanocrystals (d = 1 ‐ 2 nm) were highly dispersed in membranes such as a Nation® commercially available (denoted as Pt‐PEM or Pt‐oxide‐PEM) attempting to self‐humidify the PEMs and/or to suppress the short‐circuit reaction by a catalytic oxidation of the crossover hydrogen or methanol with oxygen on the Pt catalyst. High and stable performances under the suppressed crossover and lowered internal resistance are demonstrated at the H2/O2 fuel cells applied Pt‐PEM or Pt‐oxide‐PEM without any external humidification. An appreciable increase of the cathode potential due to the reduced methanol crossover was clearly demonstrated at a direct methanol fuel cell (DMFC) with Pt‐PEM. It also becomes clear that the development of new PEMs with lowered permeability against methanol is essential for DMFCs.  相似文献   

17.
We studied the influence of CO poisoning of the anode in the polymer electrolyte membrane fuel cell (PEMFC) using electrochemical impedance spectroscopy (EIS). The anode impedance was found by first feeding neat hydrogen gas and next hydrogen with CO into one of the electrodes, keeping neat hydrogen gas on the other electrode as a reference. The electrodes were E-TEK Elat gas-diffusion electrodes with 0.5 mg Pt/cm2, and the membrane was Nafion® 117. The CO concentration was 103 ppm, and the total pressures were 1, 2.5 and 4 bar. Operating temperatures were kept constant, 30.0 °C or 50.0 ± 0.1 °C. Bias voltages of 0 and 0.05 V were used. Three steps were revealed in the reaction mechanism, the slow adsorption/diffusion step, the charge transfer step and the proton hydration step, confirming earlier results. Carbon monoxide affects the charge transfer step by blocking active sites and by affecting the surface polarisation. We further conclude that CO adsorbs to the porous carbon matrix, and reduces significantly the rate of surface diffusion of hydrogen to the surface.  相似文献   

18.
CeO(2), Pt/CeO(2) and MnO(2) additives were found to lower the rate of free radical induced polymer electrolyte membrane degradation in an operating fuel cell by over one order of magnitude.  相似文献   

19.
Palladium-based nanostructured electrocatalysts on the Vulcan XC-72 carbon support for fuel cells with solid polymer electrolyte are synthesized and studied. In particular, electrochemical studies of the synthesized catalysts are carried out and membrane-electrode assemblies are assembled on their basis and tested. The test results indicate that platinum can be replaced with palladium in the hydrogen electrode of the fuel cells.  相似文献   

20.
A method for measuring the kinetics of the hydrogen oxidation reaction (HOR) in a fuel cell under enhanced mass transport conditions is presented. The measured limiting current density was roughly 1600 mA cmPt? 2, corresponding to a rate constant of the forward reaction in the Tafel step of 0.14 mol m? 2 s? 1 at 80 °C and 90% RH. The exchange current density for the HOR was determined using the slope at low overvoltages and was found to be 770 mA cmPt? 2. The high values for the limiting and exchange current densities suggest that the Pt loading in the anode catalyst can be reduced further without imposing measurable voltage loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号