首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500–400 cm−1) of 1-chloropropane (CH3CH2CH2Cl) and 1-bromopropane (CH3CH2CH2Br) dissolved in liquid krypton and xenon, respectively, have been recorded. Utilizing two conformer pairs in krypton solution for chloride and three conformer pairs in xenon solution for bromide, enthalpy differences of 52±3 cm−1 (0.62±0.06 kJ/mol) and 72±7 cm−1 (0.86±0.08 kJ/mol) were obtained for the chloride and bromide, respectively, with the gauche form being the more stable conformer for both molecules. From these data, it is estimated that 28 and 26% of trans form are present at ambient temperature for the chloride and bromide, respectively. The conformation stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations for both halopropanes and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The r0 structural parameters of both halopropanes have been obtained by combining the ab initio data with the previously reported microwave rotational constants for both conformers. The quantities are compared to the corresponding results for some similar molecules.  相似文献   

2.
The influence of hyperconjugative interactions on bond lengths of some allylic compounds (H2CCH–CH2–M(CH3)3; M=C, Si, Ge) has been investigated through NBO calculations using ab initio and density functional methods. The optimized structural parameters, at the B3LYP/6-31+G(d,p) and HF/6-31+G(d,p) levels, showed a good agreement with the resonance theory. Partial geometry optimization with orbital interactions removed confirmed the observations and revealed that σ→σ* interactions, together with the more common σ→π* ones, play an important role in determining the variations in bond lengths on going from C to Ge.  相似文献   

3.
First-principles Car-Parrinello molecular dynamics, ab initio (MP2) and density functional schemes have been used to explore the tautomeric equilibrium in three tris(amino(R)methylidene)cyclohexane-1,3,5-triones (R?=?hydrogen, methyl or phenyl group). The dynamic nature of the cyclic hydrogen bonding has been studied by the first-principles MD method. The comparison of the results obtained by aforesaid methods has been accomplished on the basis of calculations of structural and spectroscopic characteristics of the compounds. The conformational analysis of the studied compounds has been carried out at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels of theory. The influence of steric and electronic effects on the cyclic hydrogen bonding has been analysed. The extent of the proton delocalization has been modified by the substituents according to the sequence: hydrogen?<?phenyl?<?methyl. This fact is verified by the spectroscopic and structural data as well as the energy potential curve. A prevalence of the keto-enamine tautomeric form has been observed in the static ab initio and DFT models, and confirmed by the first-principles MD.  相似文献   

4.
Dieter Cremer 《Tetrahedron》1988,44(24):7427-7454
A discussion of σ-aromaticity requires a distinction between σ-conjugation, σ-electron delocalization, and σ-bond delocalization, all of which can be considered as prerequisites of σ-aromatic character. All molecules with three or more atoms encounter σ-conjugative interactions. Also, all σ-electrons are delocalized if the term delocalization is taken in its quantum theoretical meaning. However, σ-conjugation and σ-electron delocalization do not necessarily imply σ-bond delocalization. - One can distinguish between three different modes of σ-delocalization: ribbon delocalization in acyclic molecules and larger rings, surface delocalization in small rings, and volume delocalization in cage compounds. Surface delocalization of σ-electrons is found to lead to σ-bond delocalization. An example is cyclopropane. Bonding in cyclopropane can only be described in terms of nonclassical 2-electron 3-center and 4-electron 3-center bonds. Application of the criteria used to define π-aromaticity reveals that the properties of cyclopropane are in line with these criteria and that the term σ-aromaticity cannot be rejected on the grounds that aromaticity is restricted to π-electrons. The pros and cons of using the term σ-aromaticity in chemical discussions are presented.  相似文献   

5.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

6.
A computational study on dichalcogenide molecules (R2X2; X = O, S, Se; R = H, CH3, NH2) has been carried out employing B3LYP and MP2 levels using 6-31+G*, 6-311+G*, 6-311++G**, and PVDZ basis sets. The relative energies have been evaluated at G2MP2 also. The rotational barriers and bond dissociation energies indicate that S–S bond is stronger than Se–Se and O–O bond. NBO analysis at MP2/6-31+G* suggest the presence of partial π character between X–X bond that decreases in the order S–S > Se–Se > O–O. Fuki functions for nucleophilic and electrophilic attack fail to distinguish the reactivity of S and Se. The proton affinities of the O2H2, S2H2, Se2H2 decrease in the order Se > S > O.  相似文献   

7.
The molecular structure of 6-(N,N-dimethylamino)fulvene was studied by gas-phase electron diffraction and quantum-chemical methods (HF/6-31G(d), MP2/3Z, MP2/4Z, density functional theory with the B3LYP/6-31G(d) and PBE/3Z functionals). Pronounced flattening of the nitrogen atom and equalization of the intracyclic C—C bonds were found to be a consequence of the electron delocalization in the molecule.  相似文献   

8.
NIR-FT Raman and FT-IR spectra of the crystallized biologically active molecule N,N′-diphenylguanidinium nitrate (DGN) have been recorded and analyzed using quantum chemical computations based on density functional theory. The extraordinary basicity and strong stability of this novel bioactive compound has been discussed as the consequence of resonance stabilization leading to Y-aromaticity and hydrogen bonding. This peculiar Y-delocalization character of DGN is well reflected in the optimized geometry and bond order (BO) calculations. The observance of the equality of C–N bond lengths in the protonated species indicates delocalization of the π-electron system. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of strong network of inter molecular hydrogen bonds. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of DGN calculated by second order perturbation theory have been studied extensively in comparison with the values of the neutral species. The observed characteristic ring vibrations are well fit with the theoretical values calculated at B3LYP/6-31G* level.  相似文献   

9.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

10.
The ground-state structure of the charge-transfer complex formed by pyridine (Py) as electron donor and chloranil (CA) as acceptor has been studied by full geometry optimization at the MP2 and DFT levels of theory. Binding energies were calculated and counterpoise corrections were used to correct the BSSE. Both MP2 and DFT indicate that the pyridine binds with chloranil to form an inclined T-shape structure, with the pyridine plane perpendicular to the chloranil. The CP and ZPE corrected binding energies were calculated to be 14.21 kJ/mol by PBEPBE/6-31G(d) and 23.21 kJ/mol by MP2/6-31G(d). The charge distribution of the ground state Py–CA complex was evaluated with the natural population analysis, showing a net charge transfer from Py to CA. Analysis of the frontier molecular orbitals reveals a σ–π interaction between CA and Py, and the binding is reinforced by the attraction of the O7 atom of CA with the H23 atom of Py. TD-DFT calculations have been performed to analyze the UV–visible spectrum of Py–CA complex, revealing both the charge transfer transitions and the weak symmetry-relieved chloranil π–π* transition in the UV–visible region.  相似文献   

11.
Ab initio quantum-mechanical methods at the HF/6–31G*, MP2/6–31G* and MP2/6–31G* levels are used to study the relative stabilities of the isomers of SiB2H4. Isomers obtained using the analogy between trivalent boron and divalent silicon are calculated to be more stable compared to isomers where carbon is replaced by the isovalent silicon. 2π aromaticity and the preference of silicon for lower valency control the relative stabilities of SiB2H4 isomers.  相似文献   

12.
A gas phase electron diffraction study of 3-bromo-2-methyl-1-propene shows that there is predominantly a gauche conformer present. Data recorded at 20 and 180°C show 4(8) and 5(4)% respectively of a second confomer with a planar heavy atom skeleton. The gauche structural results in terms of ra distances and angles at 20°C were found to be: r(C---C) = 1.331(9) Å, r(C---CH2Br) = 1.484(6) Å, r(C---CH3) — r(C---CH2Br) = 0.017 Å, (assumed), r(C---Br) = 1.965(6) Å, C=C---CH2Br = 121.5(0.7)°, C=C---CH2Br — C=C---CH3 = 0.7° (constraint from molecular mechanics calculation), C---C---Br = 112.2(0.5)°, torsional ANGLE = 112.5(2.2)°. Uncertainties are given as 2σ, where σ includes uncertainties due to correlation among observations, electron wavelength and other parameters used in the data reduction. The results obtained from the 180°C data agree very well with those given above. The molecular mechanics calculations yield information consistent with the experimental results.  相似文献   

13.
By using ab initio methods of all-electron or effective core potential calculations, the electronic structures and the possible aromaticity of some 10π-electron systems, C6H64− (1), N64− (2), P64− (3), S62− (4), Te62− (5) and S3N3 (6), have been studied at the SCF levels using 4-31G//4-31G and 6-31G*//6-31G* basis sets. The bonding characteristics of these systems are analysed in terms of the canonical molecular orbital and the Foster-Boys localized molecular orbital results. The application of the second-order Jahn-Teller theorem to the stability of these diamagnetical planar species is presented.  相似文献   

14.
The molecular structure, conformational stability and isomerization of nitroso, nitro substituted benzene and 1,3-cyclopentadiene in gas phase have been investigated using ab initio and density functional theory methods. The molecular geometries and energetics of possible conformers were obtained by employing MP2, B3LYP and B3PW91 levels of theory implementing 6-31G* basis set. The relative stabilities of the conformations were evaluated from the energy differences of the structure. Chemical hardness (η) and chemical potential (μ) were calculated at HF/6-31G* level of theory for all the positional and geometrical isomers to study the maximum hardness principle. Each optimized structure has been tested against the imaginary frequencies at MP2/6-31G* level of theory in order to be sure they are located at energy minimum.  相似文献   

15.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500 to 400 cm−1) of dimethylmethoxyphosphine, (CH3)2POCH3 and dimethyl(methylthio)phosphine, (CH3)2PSCH3 dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 393±50 cm−1 (4.71±0.60 kJ/mol), for (CH3)2POCH3 with the near-cis conformer the more stable rotamer and 80±10cm−1 (0.96±0.12 kJ/mol) for (CH3)2PSCH3 with the cis conformer the more stable form. Complete vibrational assignments are presented for both molecules, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.  相似文献   

16.
Ab initio supermolecular SCF calculations have been carried out on diacetylene-HF complexes at the STO-4-31G level. The reverse σ (Rσ) complex has been found to have the lowest energy. Of the two π complexes. T and L, the symmetrical one T is found to be energetically less stable than the asymmetrical one L. Theoretical vibrational analysis tends to support this stability order. Electrostatic interaction energy calculations also lead to an almost identical sequence. Hydrogen bond energies corrected for basis set superposition error indicate that ΔEH (Rσ) > ΔEH (Tπ) ≈ ΔEH (Lπ).  相似文献   

17.
Variable temperature studies of the infrared spectra (3500–400 cm−1) of 1-pentyne, CH3CH2CH2CCH, dissolved in liquid xenon (−55 to −100°C) and liquid krypton (−105 to −150°C) have been recorded. These data indicate that the anti (methyl group trans to the acetylenic group) and gauche conformers have relative concentrations that vary with the temperature, i.e. enthalpy nonzero. Utilizing seven sets of conformer pairs for the xenon solution and ten sets of conformer pairs for the krypton solution, the enthalpy difference has been determined to be 50±6 cm−1 (0.60±0.07 kJ/mol) and 45±4 cm−1 (0.54±0.05 kJ/mol), respectively, with the anti conformer the more stable form. Because of two equivalent gauche forms, this conformer is estimated to be in higher abundance at 61±1% in the xenon solution and 62±1% in the krypton solution. Optimized geometries and conformational stabilities have been obtained from ab initio calculations with basis sets 6-31G(d), 6-311+G(d,p), 6-311+G(2d,2p) and 6-311+G(2df,2pd) with full electron correlation by the perturbation method to second order (MP2). All of the calculations predict the gauche rotamer to be the more stable form with a high value of 181 cm−1 from the MP2/6-311+G(d,p) calculations and a low value of 107 cm−1 from the MP2/6-311+G(2d,2p) calculation. The ro adjusted structural parameters have been obtained from a combination of the microwave rotational constants and ab initio predicted parameters. The values are compared to the recently reported values from an electron diffraction study where the value for the CC bond distance appears to be too long. The results are discussed and the conformational stability is compared to those obtained for some similar molecules.  相似文献   

18.
The Raman spectra (3200–100 cm−1) of epifluorohydrin, OCH2CH(CH2F), in variable solvents, as well as that of the gas have been recorded and several of the bands due to the two less stable conformers have been identified. The variable solvent studies were inconclusive on the relative conformer stabilities. The conformational energy differences and optimized geometries for all three conformers have been obtained from ab initio calculations with the 3–21G, 4–31G and 6–31G* basis sets. A normal coordinate analysis has also been performed for each conformer with a force field determined from the 3–21G basis set. Assignment of the vibrational fundamentals observed in the Raman spectra of the fluid phases is proposed based on the normal coordinate calculations. In the liquid phase, one of the conformers with a large dipole moment predominates and it appears to be the gauche-I form which is the only one found in the solid. Utilizing the three rotational constants previously reported for each conformer, along with restricted relative distances for several of the structural parameters among the conformers from ab initio calculations, r0 structural parameters for the heavy atoms have been determined.  相似文献   

19.
In this paper, the synthesis principles and methods of 1,1-spiro(ethylenediamino)-3,3,5,5-tetrachlorocyclotriphosphazene (ETCCTP) and its nitration product of 1,1-spiro(N,N′-dinitroethylenediamino)-3,3,5,5-tetrachlorocyclotriphosphazene (DNETCCTP) have been reported. Their structures were demonstrated by elemental analysis, NMR, MS, and FTIR methods. Besides, the crystal of the title compound was obtained and characterized by X-ray single-crystal diffraction technique. The obtained results showed that the crystal belongs to Crystal system of Monoclinic with space group of C2/c. Based on the crystal data, geometries and normal vibrations have been obtained by using the B3LYP method with the 6-31G**, 6-311G**, and 6-31++G** basis sets. The calculation results further demonstrate the molecular structure of the title compound.  相似文献   

20.
Extended basis sets of gaussian functions were used to calculate near Hartree-Fock estimates of the electric dipole polarizabilities, , and first hyperpolarizabilities, β, of the “inorganic benzenes” B3N3H6, B3O3H3, B3P3H3 and Al3N3H6. Assuming that electron delocalization is responsible for the enhanced polarizabilities of aromatic systems, an aromaticity scale can be set up according to the trend of theoretical polarizabilities obtained in this work, i.e. (B3O3H3) < (B3N3H6 ) < (C6H6 ), which is consistent with previous calculations of the degree of delocalization in these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号