共查询到20条相似文献,搜索用时 11 毫秒
1.
This article demonstrates the first reported successful synthesis of Mg2SiO4 nanowires. We have thermally heated Au-coated Si substrates, using a quartz tube with its inner surface pre-coated with MgO
nanostructures. We have characterized the sample morphologies by using scanning electron microscopy and transmission electron
microscopy (TEM). X-ray diffraction analysis and high-resolution TEM observation coincidentally revealed that the nanowires
were crystalline with an orthorhombic Mg2SiO4 structure. We have discussed the possible growth mechanism of Mg2SiO4 nanowires.
PACS 81.07.-b; 81.05.Zx; 61.10.Nz; 68.37.Hk; 68.37.Lp 相似文献
2.
The phase behaviour of K3H(SeO4)2 (TKHSe) above room temperature has been studied by differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), simultaneous thermogravimetric and mass spectroscopy analysis (TG-MS), impedance spectroscopy (IS) and X-ray powder diffraction (XRD). Our results show that the previously claimed superionic phase transition in TKHSe at around 388 K (114.85 °C) is also the onset temperature of a slow thermal dehydration that occurs at reaction sites distributed over the surface of the crystal. That is, we propose that the TKHSe undergoes simultaneously a superionic phase transition and a decomposition process with a very slow reaction rate that is evident when the sample is pulverized to fine powder, both starting at the same temperature. As a matter of fact, we observe a decrease of the magnitude of the dc-conductivity on successive thermal runs in powdered sample attributed to sample decomposition that starts at the surface of the TKHSe grains, but the jump in conductivity is only a consequence of the order–disorder transition in the TKHSe phase that remains inside the grains. 相似文献
3.
β-Ga2O3 nanowires have been synthesized using Ga metal and H2O vapor at 800 °C in the presence of Ni catalyst on the substrate. Remarkable reduction of the diameter and increase of the
length of the Ga2O3 nanowires are achieved by separation of Ga metal and H2O vapor before they reach the substrate. Transmission electron microscopy analyses indicate that the β-Ga2O3 nanowires possess a single-crystalline structure. Photoluminescence measurements show two broad emission bands centered at
290 nm and 390 nm at room temperature.
Received: 27 June 2002 / Accepted: 7 October 2002 / Published online: 17 December 2002
RID="*"
ID="*"Corresponding author. Fax: +886-6/234-4496, E-mail: wujj@mail.ncku.edu.tw 相似文献
4.
We present two effective routes to tune the electronic properties of single-crystalline In2O3 nanowires by controlling the doping. The first method involves using different O2 concentrations during the synthesis. Lightly (heavily) doped nanowires were produced by using high (low) O2 concentrations, respectively, as revealed by the conductances and threshold voltages of nanowire-based field-effect transistors. Our second method exploits post-synthesis baking, as baking heavily doped nanowires in ambient air led to suppressed conduction and a positive shift of the threshold voltage, whereas baking lightly doped nanowires in vacuum displayed the opposite behavior. Our approaches offer viable ways to tune the electronic properties of many nonstoichiometric metal oxide systems such as In2O3, SnO2, and ZnO nanowires for various applications. PACS 85.35.-p 相似文献
5.
F. B. Mushenok A. I. Dmitriev M. V. Kirman S. M. Aldoshin N. A. Sanina R. B. Morgunov 《Physics of the Solid State》2010,52(10):2135-2141
Ordered arrays of nanowires of the photochromic antiferromagnet SpFeMn(C2O4)3 (where Sp is 1-{(1′,3′,3′-trimethyl-6-nitro-5′-chlorospiro[2H-1-benzopyran-2,2′-indolin]-8-yl)methyl}pyridinium) have been fabricated in anodized aluminum oxide pores with diameters of
20 and 200 nm. It has been revealed that the growth of the spin-glass phase with noncollinear ordering of spins in nanowires
is suppressed in favor of the uniaxial antiferromagnetic phase. A decrease in the nanowire diameter leads to an increase in
the anisotropy of the magnetic resonance spectra. This is associated with the magnetocrystalline anisotropy that considerably
exceeds the anisotropy of the nanowire shape. 相似文献
6.
Single-phase coarse-grained CuIn3Se5 ingots are grown by horizontal oriented crystallization from the near-stoichiometric melt. Photosensitive structures based
on the interface between these crystals and an electrolyte (H2O) are created. It is shown that the CuIn3Se5 ternary compound is a direct-gap semiconductor with an energy gap Eg ≃ 1.1 eV (T = 300 K). H2O/CuIn3Se5 photoelectrochemical cells seem to be promising for efficient wide-band photodetectors of natural light. 相似文献
7.
Aleandro Antidormi Mariagrazia Graziano Gianluca Piccinini Luca Boarino Riccardo Rurali 《The European Physical Journal B - Condensed Matter and Complex Systems》2016,89(12):275
High chemical reactivity and large surface-to-volume ratio have recently led to growinginterest in the employment of silicon nanowires (SiNWs) in sensing applications forchemical species detection. The working principle of SiNWs sensors resides in thepossibility to induce modifications in their electronic properties via molecularinteraction. A detailed analysis of the interaction of Si with molecular compounds is thenrequired to design and optimize NW-based sensors. Here we study the mechanisms ofadsorption on SiNWs of SO2, an air pollutant with pernicious effects on humans.First-principles density-functional calculations are performed to calculate the electronicstructure of a SO2molecule adsorbed at a silicon surface in case of undoped substrate and in presence ofsubstitutional subsurface and deep boron impurities. Comparing the results with the caseof NO2 adsorption –a similar molecule that, nonetheless has a very different interaction with a Si surface –,we show the specific traits of SO2 interaction: formation of localized states in theband-gap and absence of reactivation of pre-existing and passivated sub-surfaceimpurities. A connection between the modifications in the system electronic structure andthe strength of the molecular interaction is discussed. 相似文献
8.
Uniform zinc antimoniate (ZnSb2O4) nanowires and nanobelts with a spinel structure were synthesized by an indirect thermal evaporation method in air. The as-synthesized ZnSb2O4 nanowires and nanobelts are single crystalline, usually several tens of microns in length. The diameter of the nanowires is about 20 nm; the thickness and the width of the nanobelts are about 15 nm and 60 nm, respectively. Most of the nanowires and nanobelts grow along the [001] direction. A possible formation mechanism is also proposed to account for the growth of these ZnSb2O4 nanobelts and nanowires. PACS 61.46.+w; 81.07.-b 相似文献
9.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained
mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the
basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane. 相似文献
10.
Nannan Li Jian Liu Xiulan Duan Fapeng Yu Huaidong Jiang 《Journal of nanoparticle research》2017,19(8):285
This report discusses the preparation and microstructure of Co/Ni co-doped MgGa2O4 nanoparticles. The nanoparticles with the size of 20–55 nm were synthesized by sol-gel method. The phase and crystallinity were confirmed by X-ray powder diffraction (XRD) pattern. The particle size was estimated according to XRD data and transmission electron microscopy. The electronic structure was studied using X-ray photoelectron spectroscopy (XPS). The XPS studies showed that Ga3+ ions possess tetrahedral and octahedral sites of spinel structure and the inverse degree (two times of the fraction of tetrahedral Ga3+ ions) has increased with the increase of the doping concentration of Co2+ and Ni2+ ions. For Co/Ni co-doped MgGa2O4, two broad absorption bands of 350~500 and 550~700 nm were observed in the absorption spectra. The broad band at 350~500 nm was assigned to the combination of the absorption of octahedral Co2+ and Ni2+ ions, whereas the absorption band at 550~700 nm is mainly due to tetrahedrally coordinated Co2+ ions and octahedrally coordinated Ni2+ ions. 相似文献
11.
L. T. Denisova L. A. Irtyugo V. V. Beletskii V. M. Denisov 《Physics of the Solid State》2016,58(7):1300-1303
Oxide compounds Pr2Sn2O7 and Nd2Sn2O7 have been obtained by solid-phase synthesis. The effect of temperature on the heat capacity of Pr2Sn2O7 (360–1045 K) and Nd2Sn2O7 (360–1030 K) has been studied using differential scanning calorimetry. The thermodynamic properties of the compounds (changes in enthalpy, entropy, and the reduced Gibbs energy) have been calculated by the experimental data of Cp = f(T). 相似文献
12.
T. V. Sviridova L. Yu. Sadovskaya A. I. Kokorin E. A. Konstantinova V. E. Agabekov D. V. Sviridov 《Russian Journal of Physical Chemistry B, Focus on Physics》2017,11(2):348-353
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5). 相似文献
13.
The results of ab initio FLAPW-GGA computations of the band structure of two new layered low-temperature superconductors BaRh2P2 and BaIr2P2 (with a ThCr2Si2 tetragonal structure) are presented. As distinct from the family of the isostructural FeAs superconductors, they feature the complete replacement of the magnetic (Fe) metal by the nonmagnetic 4d (Rh) and 5d (Ir) metals. For BaRh2P2 and BaIr2P2, the energy bands, the distributions of the densities of electronic states, the Fermi surface topology, and the coefficients of the low-temperature electron specific heat and the molar Pauli paramagnetic susceptibility have been determined. An increase in T C in the BaRh2P2 (1 K) → BaIr2P2 (2.1 K) transition can assumingly be attributed to the features of their phonon subsystem. 相似文献
14.
15.
S. A. Kostyukevych P. E. Shepeliavyi P. F. Romanenko I. V. Tverdochleb 《Technical Physics》2003,48(1):115-117
The formation of holographic diffraction gratings based on As2S3 layers is investigated. The variation of the groove profiles with exposure is studied by atomic force microscopy. The spectral
curves of the diffraction efficiency are taken, and a relationship between these curves and grating surface relief is analyzed. 相似文献
16.
17.
N. S. Saetova A. A. Raskovalov B. D. Antonov T. V. Yaroslavtseva O. G. Reznitskikh E. V. Zabolotskaya N. I. Kadyrova A. A. Telyatnikova 《Ionics》2018,24(7):1929-1938
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3–xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature. 相似文献
18.
This paper reports on the results of the ab initio FLAPW-GGA band structure calculations for two new layered phases SrRu2As2 and BaRu2As2, which are isostructural and isoelectronic to the known tetragonal (Ca,Sr,Ba)Fe2As2 basis phases of the FeAs superconductor family. The energy bands, densities of states, topology of the Fermi surface, low-temperature
electron specific heats, and molar Pauli paramagnetic susceptibilities of SrRu2As2 and BaRu2As2 are determined for the first time and discussed in comparison with those for BaFe2As2 and BaRh2As2. 相似文献
19.
A. I. Burkhanov Yu. V. Kochergin K. Bormanis A. Kalvane 《Bulletin of the Russian Academy of Sciences: Physics》2010,74(9):1264-1266
The dielectric nonlinearity in BaBi2Nb2O9 and SrBi2Ta2O9 layered ceramics was studied by measuring their polarization loops and reverse dependences of permittivity. It was shown
that the features of the dielectric response of BaBi2Nb2O9 and SrBi2Ta2O9 in strong fields can be explained by glass-like properties and the contribution of the domain structure of the ferroelectric
material to repolarization processes, respectively. 相似文献
20.
R. B. Morgunov E. V. Kurganova S. M. Aldoshin N. A. Sanina T. N. Rudneva 《Physics of the Solid State》2007,49(9):1723-1730
The magnetic properties of the binuclear nitrosyl-iron complexes Fe2(SC3H5N2)2(NO)4 are investigated. It is demonstrated that several types of particles, such as dimers with a pair of spins 1/2, dimers with a pair of spins 5/2, and paramagnetic particles with spin 3/2, make a contribution to the magnetic properties of the complexes. A decrease in the temperature below 25 K leads to a change in the shape of the EPR spectra corresponding to these dimers, so that Lorentzian lines (homogeneous broadening) transform into Gaussian lines (inhomogeneous broadening). This is accompanied by a stepwise change in the EPR line width and g factors. The change in the line shape indicates that complexes become asymmetric at low temperatures, possibly, due to the decrease in the spin exchange frequency below the frequency of the microwave field of the spectrometer. 相似文献