首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Potassium hydrotris(2-mercaptobenzathiazolyl)borate (KL) was formed by the solid state reaction of potassium borohydride and 2-mercaptobenzathiazoline. This ligand was reacted with R n SnCl4?n (R =?methyl, butyl and phenyl, n =?2 and 3) in dichloromethane and four different neutral organotin(IV) complexes were obtained. All compounds were characterized by elemental analyses, FT-IR and multinuclear NMR (1H, 13C, 11 B and 119Sn) spectroscopy. Spectroscopic data indicate the six-coordinated nature of tin in its di and triorganotin(IV) complexes.

To check the toxic potential of the ligand and its organotin(IV) complexes, selected bacterial (E. coli, S. epidemidis and S. dysenteriae) and fungal (A. niger, C. albicanes and A. flaves) species were screened. The results were compared with standard drugs kinamycine and miconazole for bacterial and fungal activity, respectively. The toxicity of the organotin(IV) complexes depends on the number and nature of organic groups attached to the tin atom; triorganotin(IV) complexes exhibit better inhibition than diorganotin(IV) complexes. All compounds were also screened on the cyanobacterial strains (Aulosira fertillissma, Anabaena variabilis, Anabaena species and Nostoc muscorum). Results show that the compounds inhibit the growth of organisms at very low concentration.  相似文献   

2.
A new series of di- and tri-organotin(IV) compounds with the general formula R4?n SnL n , where R?=?Me (1,2), Et (3), n-Bu (4,5), n-Oct (6), Ph (7) and L?=?(E)-3-(4-methoxyphenyl)-2-(4-chlorophenyl)-2-propenoate, were synthesized by reaction of silver salt of ligand or ligand acid with diorganotin dichloride/oxide and triorganotin chloride in 2:1 and 1:1 molar ratio, respectively. These compounds were characterized by elemental analyses, FT-IR, multinuclear (1H, 13C, 119Sn) NMR and mass spectrometry. The spectroscopic results revealed that all the diorganotin(IV) compounds possess trigonal bipyramidal structures in solution and octahedral geometry in the solid state around the tin atom. A linear polymeric trigonal bipyramidal structure in the solid state and a tetrahedral environment around the tin atom in non-coordinating solvents has been proposed for the triorganotin(IV) compounds. All synthesized compounds were tested in vitro against a number of microorganisms to assess their biocidal activity. These studies revealed that ligand acid and some of its organotin compounds show promising activity against different strains of bacteria and fungi but lowered than reference drugs.  相似文献   

3.
Four new organotin (IV) complexes with general formula R3SnL/R2SnL2, where R = CH3, n-C4H9, C6H5 and L = Levofloxacin, were synthesized and characterized by elemental analyses, FT-IR and NMR (1H and 13C) spectroscopy. Spectroscopic data suggested a six-coordinated geometry for diorganotin(IV) derivatives and a five-coordinated geometry for triorganotin(IV) derivatives. The value of Me–Sn–Me bond angle for di- and trimethyltin complexes using the Lockhart equation, were 150° and 116°, respectively, that corresponded to six and five-coordinate geometry, accordingly. The ligand and its complexes were screened for their antibacterial, antifungal, cytotoxic, and free radical scavenging (DPPH) antioxidant activities. The biological data indicated those as potentially bioactive in each field of the study. Accumulated data of DNA interaction with the synthesized complexes based on UV-Vis, cyclic voltammetry and viscometry suggested an intercalative mode of the interaction.  相似文献   

4.
New organotin(IV) complexes have been synthesized by treating potassium o‐isopropyl carbonodithioate with R2SnCl2/R3SnCl in 1 : 2/1 : 1 M/L ratio. All complexes have been characterized by IR and NMR (1H, 13C) spectroscopy. IR results shows that ligand acts as bidentate which is also confirmed by semi‐empirical study. NMR data reveals four coordinated geometry in solution. Computed positive heat of formation shows that complex 5 is thermodynamically unstable. UV/visible spectroscopy was used to assess the mode of interaction and binding of the complexes with DNA which shows that complex 5 exhibits higher binding constant as compared to complex 3 . In protein kinase inhibition assay, compound 3 was found most active, while other biological activities shows that triorganotin(IV) complexes are biologically more active as compared to diorganotin(IV) complexes.  相似文献   

5.
Four new compounds of organic mono carboxylic acid, 3-maleimidopropionic acid; with Bu2Sn(IV)2+, Ph3Sn(IV)+ and Cychex3Sn(IV)+ having ligand to metal ratio 1:2 and 1:1 were prepared. The spectrophotometric techniques used for structure determination like 1H-, 13C- and 119Sn-NMR, FT IR and 119mSn Mössbauer have demonstrated that the organotin(IV) moieties establish chemical bonding with the ligand through carboxylic oxygen atom. The percent CHN analyses and MS data also corroborates the spectroscopic results. During in vitro LD50, anti-fungal, anti-bacterial and anti-yeast bioassays promising results were exhibited. In vitro anti-tumour activity assays against five human tumor cell lines, MCF-7 Breast cancer-EVSA-T Breast cancer-WiDr Colon cancer-IGROV Ovarian cancer-M226 Non small cell lung cancer and anti-inflammatory screenings furnished the significant toxicities of the title complexes. In addition the triorganotin(IV) complexes were comparatively less toxic than the diorganotin(IV) complexes.  相似文献   

6.
A new series of organotin(IV) complexes of aniline derivatives, R2SnL2 and R3SnL [where R = Me, n-Bu, n-Oct, and Ph], have been synthesized by the reaction of ligand acid with respective organotin halides in the presence of triethylamine as base or dioctyltin oxide using a Dean–Stark trap for the removal of water under reflux conditions. Experimental details for the preparation and characterization, including elemental analysis, IR, semi-empirical study, multinuclear NMR (1H, 13C, and 119Sn spectra and EI mass spectral studies) of all reported complexes are provided. The IR data indicate that in both di- and triorganotin(IV) carboxylates, the ligand moiety ?COO acts as a bidentate group in the solid state. Multinuclear NMR data show that triorganotin complexes exhibits a four-coordinated geometry, while diorganotin(IV) complexes show a coordination number greater than four, probably five or six, in solution state.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

7.
Seven different organotin(IV) complexes have been synthesized by reacting 2-ethylanilinocarbonylpropenoic acid with R2SnCl2/R3SnCl under reflux conditions. The organotin(IV) complexes along with ligand have been characterized by different techniques including elemental analysis, FT-IR and multinuclear NMR (1H and 13C). IR data show that complexation occurs through -COO site and the ligand is bidentate which is also confirmed by the semi-empirical quantum-mechanical study. 1H and 13C NMR data confirm the tetrahedral geometry of complexes in solution. The complexes as well as the ligand were also checked for various  相似文献   

8.
9.
Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H, 13C and 119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 μM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and -H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment.  相似文献   

10.
The C,N-chelated tri-, di- and monoorganotin(IV) halides react with equimolar amounts of CF3COOAg to give corresponding C,N-chelated organotin(IV) trifluoroacetates. The set of prepared tri-, di- and monoorganotin(IV) trifluoroacetates bearing the LCN ligand (where LCN is 2-(N,N-dimethylaminomethyl)phenyl-) was structurally characterized by X-ray diffraction analyses, multinuclear NMR and IR spectroscopy. In the case of triorganotin(IV) trifluoroacetates and (LCN)2Sn(OC(O)CF3)2, no tendency to form hydrolytic products, or instability towards the moisture was observed. LCNRSn(OC(O)CF3)2 (where R is n-Bu or Ph) and LCNSn(OC(O)CF3)3 forms upon crystallization from THF in the air mainly dinuclear complexes in which the two tin atoms are interconnected either by hydroxo-bridges or by an oxo-bridge and/or by a bridging trifluoroacetate(s). In the case of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2, a zwitterionic stannate of formula LCN(n-Bu)Sn(OC(O)CF3)2·CF3COOH was isolated from the mother liquor, too. Products of hydrolysis of LCN(n-Bu)Sn(OC(O)CF3)2 and LCNSn(OC(O)CF3)3, and some other oxygen bridged organotin(IV) compounds containing the same ligand, were tested as possible catalysts of some transesterification reactions as well as in direct dimethyl carbonate (DMC) synthesis from CO2 and methanol.  相似文献   

11.
Di- and tri-organotin(IV) derivatives of N -acetyltriglycine and N -benzoyltriglycine (HA) were obtained by refluxing equimolar mixtures of the ligand and the organotin(IV) oxide or hydroxide in methanol or acetone. According to the spectroscopic data, triorganotin(IV) derivatives adopt a trigonal-bipyramidal structure in which the planar R3SnIV unit is bonded by a monodentate carboxylate group and a donor group, presumably the amide CO. The reaction of HA with the appropriate diorganotin(IV) compounds gave both dicarboxylates R2SnA2, with six-coordinated tin, and dimeric tetraorganodistannoxanes {[R2SnA]2O}2, in which the tin atoms are essentially five-coordinated.  相似文献   

12.
Novel diorganotin(IV) derivatives of l-Arginine (HArg), Nα-(tert-Butoxycarbonyl)-l-Arginine (Boc-Arg-OH) and l-Ala-l-Arg (H2Ala-Arg), H2NC(NH)NH(CH2)3CH(NHR′)CO2H, where R′ = H in HArg, R′ = C(O)OC(CH3)3 in Boc-Arg-OH, R′ = H2NCH(CH3)CO in H2Ala-Arg and triorganotin(IV) derivatives of Boc-Arg-OH have been synthesized and structurally characterized. The complexes were investigated by FT-IR and 119Sn Mössbauer in the solid state and by 1H, 13C, 119Sn and 1H-1H COSY NMR spectroscopy, in solution. The spectroscopic characterization leading to the proposed molecular structures was accomplished on the basis of these experiments. l-Arginine appears to behave as a chelating ligand through carboxylate and -NH2 groups in Me2Sn(Arg)2, while in Nα-t-Boc-l-Arginine complex, the Nα-protected amino group being exempted from coordination, only the carboxylate groups are effectors of bonding to the organometallic moieties. FT-IR spectra give a clear indication that guanidino groups in all the complexes are not involved in coordination, since ν(CN-H) frequency of the terminal guanidino group is fairly constant and unshifted relative to the free ligand. The biological activity of organotin(IV)-complexes was also investigated by use of human HT29 colorectal carcinoma cells. The cytotoxic activity of the compounds was determined by the MTT quantitative colorimetric assay, capable of detecting viable cells in comparison with that exerted by cisplatin. A marked cytotoxic activity for nearly all complexes, is evident being higher than that exerted by cisplatin, while no significant improvement of activity was observed for Me2Sn(Arg)2 and Me2Sn(Ala-Arg), which was confirmed by IC50 values. Then, we assessed whether the cytotoxicity induced by organotin(IV) complexes was associated with the induction of apoptosis. Light microscopy analysis, performed to study the morphological changes induced in HT29 cells, confirmed the results obtained with MTT test. No significant morphological alterations were observed in HT29 cells after treatment with Me2Sn(Ala-Arg) and Me2Sn(l-Arg)2. Cells treated with nBu2Sn(Boc-Arg)2, nBu2Sn(Ala-Arg), nBu3Sn(Boc-Arg) and Me3Sn(Boc-Arg), appeared rounded, isolated and detached from culture substrate, indicating the commitment to apoptotic cell death.  相似文献   

13.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

14.
The complexes of six organic carboxylic acids (containing {O,O} donor atoms) with Bu2Sn(IV)2+ and Ph3Sn(IV)+ with ligand to metal ratios of 1 : 1 and 1 : 2, were prepared by two different methods. The FtIR and Raman spectra clearly demonstrated that the organotin(IV) moieties react with the {O,O} atoms of the ligands. It was found that in most cases the -COO-group was chelated to the central metal ions, but monodentate coordination was also sometimes observed. Complex formation was accompanied by a rearrangement of the hydrogen-bonding network existing in the ligands. The complexes probably have polymeric structures. Comparison of the experimental Mössbauer D values with those calculated on the basis of the point charge model formalism revealed that the organotin(IV) moiety has a trigonal-bipyramidal (tbp) geometry, and in certain cases a tetrahedral (tetr) geometry too. Finally, the local structure of the maleic acid complex formed with Bu2Sn(IV)2+ was determined by an EXAFS method.  相似文献   

15.
Since organotin complexes have been reported to show fewer side effects relative to other heavy metal anticancer compounds, in the present study we report for the first time four novel organotin(IV) derivatives with the general formula R2SnL2, where R = methyl (1), n‐butyl (2), phenyl (3), benzyl (4) and L = morpholine‐1‐carbodithioate (MCDT). The newly synthesized ligand was monodentate or bidentate, coordinating through a sulfur atom. The complexes were synthesized by directly mixing, refluxing and stirring the ligand, with diorganotin(IV) dichlorides in a suitable solvent. The complexes were found to be pure and their solid and solution phase structural configuration was investigated by FT‐IR, multinuclear NMR (1 H, 13 C, 119Sn) and mass spectrometry. Complex 2 was also studied for its thermal decomposition by thermogravimetry and differential thermal analysis. The results obtained on the basis of these techniques are in full concurrence with the proposed 1:2 (Sn:L) stoichiometry. The cytotoxic activity of the MCDT and diorganotin(IV) complexes (1–4) was tested against tumor cell lines – human cervix carcinoma HeLa and human myelogenous leukemia K562 – and normal immunocompetent cells: peripheral blood mononuclear cells PBMC. Results of bioassay demonstrated that organotin derivatives were in general more active than the anticancer drug cisplatin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
One dinuclear chlorodiphenyltin (IV) dithiocarbamate complex (1) and four mononuclear complexes of general formula Ph2Sn(S2CNR)Cl (2, 3, 5, and 6) have been synthesized and characterized both in solid-state and solution. X-ray structures for complexes 1, 3 and 6 demonstrated a five-coordination geometry around of tin atoms, in which dithiocarbamate ligand chelates asymmetrically the metal center. As shown by 119Sn NMR spectroscopy, five-coordination geometry observed in the solid-state remains in solution. The stability of these chlorodiphenyltin(IV) dithiocarbamate complexes in the presence of biologically relevant anions such as acetate, dicarboxylates of general formula ?OOC-(CH2)n-COO? (n = 2–8), dihydrogenphosphate, hydrogensulfate, and halides has been examined in acetonitrile solutions. For all of these organotin(IV) complexes the displacement of the coordinated ligands (i.e., chloride and dithiocarbamate) from the organotin(IV) moiety occurred in the presence of monoanions like acetate, dihydrogenphosphate, hydrogensulfate and fluoride. A stepwise mechanism for ligand exchange is proposed based on UV–Vis, 1H, 13C and 119Sn spectroscopic data, as well as mass spectrometry. From UV–Vis titration experiments it was found that dicarboxylates with small spacers like malonate and succinate, acted differently in the exchange of the dithiocarbamate group in comparison to other monoanionic O donor ligands or dicarboxylates with longer chains, perhaps by following an intramolecular displacement of the coordinated ligand.The lability of these organotin(IV) dithiocarbamate compounds in solution hampers their use as stably host for anions, however, by taking advantage of the intrinsic chromogenic properties of free dithiocarbamate anions, or by attaching dithiocarbamate groups to well-known fluorescent moieties such as antracene, these complexes can sense the presence of O-donor anions at very low concentrations by displacement of the metal-coordinated dithiocarbamate.  相似文献   

17.
Nine new organotin(IV) selenites have been prepared by the reaction of 2-methylbenzeneseleninic acid, 2-methoxybenzeneseleninic acid, 4-isopropylbenzeneseleninic acid, and the corresponding triorganotin(IV) chloride with sodium ethoxide in methanol. The complexes have been characterized by elemental analysis, FT-IR, (1H, 13C, and 119Sn) NMR spectroscopy, and thermogravimetric analysis. Except for 3, 6, and 9, all of the complexes were also characterized by X-ray crystallography diffraction analyses. The structural analyses reveal that 1, 2, 4, 5, 7, and 8 exhibit 1-D infinite chain structures which are generated by bidentate oxygen atoms and five-coordinated tin. Complex 5 forms a 2-D organotin framework linked by intermolecular C–H?···?O interactions. Additionally, 1 and 2 were tested for antitumor activity in vitro.  相似文献   

18.
Several new complexes of organotin(IV) moieties with MCln[meso-tetra(4-sulfonatophenyl)porphine], (R2Sn)2MCln[meso-tetra(4-sulfonatophenyl)-porphinate]s and (R3Sn)4MCln [meso-tetra(4-sulfonatophenyl)porphinate]s, [M = Fe(III), Mn(III): n = 1, R = Me, n-Bu; Ph; M = Sn(IV): n = 2, R = Me, n-Bu] have been synthesized and their solid state configuration investigated by infrared (IR) and Mössbauer spectroscopy, and by 1H and 13C NMR in D2O.The electron density on the metal ion coordinated inside the porphyrin ring is not influenced by the organotin(IV) moieties bonded to the oxygen atoms of the side chain sulfonatophenyl groups, as it has been inferred on the basis of Mössbauer spectroscopy and, in particular, from the invariance of the isomer shift of the Fe(III) and Sn(IV) atoms coordinated into the porphyrin square plane of the newly synthesized complexes, with respect to the same atoms in the free ligand.As far as the coordination polyhedra around the peripheral tin atoms are concerned, infrared spectra and experimental Mössbauer data would suggest octahedral and trigonal bipyramidal environments around tin, in polymeric configurations obtained, respectively, in the diorganotin derivatives through chelating or bridging sulfonate groups coordinating in the square plane, and in triorganotin(IV) complexes through bridging sulfonate oxygen atoms in axial positions.The structures of the (Me3Sn)4Sn(IV)Cl2[meso-tetra(4-sulfonatophenyl)porphinate] and of the two model systems, Me3Sn(PS)(HPS) and Me2Sn(PS)2 [HPS = phenylsulfonic acid], have been studied by a two layer ONIOM method, using the hybrid DFT B3LYP functional for the higher layer, including the significant tin environment. This approach allowed us to support the structural hypotheses inferred by the IR and Mössbauer spectroscopy analysis and to obtain detailed geometrical information of the tin environment in the compounds investigated.1H and 13C NMR data suggested retention of the geometry around the tin(IV) atom in D2O solution.  相似文献   

19.
A new ligand was prepared by reacting 3,5-dimethylaniline with succinic anhydride in glacial acetic acid at room temperature. A series of organotin(IV) carboxylates were prepared by reacting the ligand with R2SnCl2/R3SnCl (R?=?Me, Bu, Ph, Oct) in 1:2/1:1 molar ratio. The synthesized complexes were characterized by elemental analyses, FT-IR, multinuclear magnetic resonance (1H and 13C) and mass spectrometry. The structures of the ligand (HL) and complex (5) were determined by single crystal X-ray diffraction analysis. FT-IR data shows that the coordination takes place through both carboxylate oxygen atoms. NMR data confirm the tetrahedral geometry in solution. In the crystal structure of ligand (HL), centrosymmetrically related molecules are linked into dimers by N?CH??O hydrogen bonding interactions, while in complex (5) coordination around the tin atom is trigonal bipyramidal, with the carbon atoms of the methyl groups occupying the equatorial plane and the O atoms of symmetry-related ligands at the apices. Organotin(IV) complexes were also screened for their antibacterial and antifungal activities, and the results suggested that the synthesized complexes are better antimicrobial agents as compared to the free ligand.  相似文献   

20.
Four new triorganotin(IV) complexes, [R3Sn(O2SeC6H4-4-Et)]4 (R = Me 1), [R3Sn(O2SeC6H4-4-Et)] n (R = Ph 2), [R3Sn(O2SeC6H4-2-Et)] n (R = Me 3; Ph 4) have been synthesized by the treatment of 4-ethylbenzeneseleninic acid, 2-ethylbenzeneseleninic acid, and the corresponding triorganotin(IV) chloride with sodium ethoxide in methanol. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, TGA, and X-ray crystallography. Crystal structures show that all of the complexes are generated by the bidentate oxygen atoms and the five-coordinated tin centers with trigonal bipyramid geometry. The structural analyses reveal that complex 1 has a centrosymmetric tetranuclear triorganotin selenite with 16-membered macrocycle, which is formed by trimethyltin and ligand alternate linking. A series of C–H···O and ππ stacking interactions in complex 1 play an important function in the supramolecular aggregation. Complex 3 has two 1D spring-like chiral helical chains and crystallizes in the monoclinic space group P21, which is chiral. Complex 2 and 4 are both 1D infinite neutral chain polymers and complex 2 forms a 2D supramolecular framework through intermolecular C–H···O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号