首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The signaling problem for the one dimensional Klein-Gordon equation with spatially varying coefficients is analyzed. A formal, uniformly valid, asymptotic expansion of the solution is obtained with the help of two families of rays, and involving four functions : two successive Bessel functions of integer order and two new functions which we call the diffraction functions. The validity of the expansion is established when the coefficients in the Klein-Gordon equation are constants, and the results are applied to a signaling problem for a class of acoustic wave guides.  相似文献   

2.
We study three-dimensional Khokhlov–Zabolotskaya–Kuznetsov (KZK) model of the nonlinear hydroacoustics with dissipation. This model is described by third order quasilinear partial differential equation of the (KZK). We obtained that the (KZK) equation admits an infinite Lie group of the transformations, depending on the three arbitrary functions. This is due to the fact that in the (KZK) model the main direction of the wave’s propagation is singled out. The submodels of the (KZK) model.are described by the invariant solutions of the (KZK) equation. We studied essentially distinct, not linked by means of the point transformations, invariant solutions of rank 0 and 1 of this equation. Also we considered the invariant solutions of rank 2 and 3. The invariant solutions of rank 0 and 1 are found either explicitly, or their search is reduced to the solution of the nonlinear integro-differential equations. For example, we obtained the invariant solutions that we called by “Ultrasonic knife” and “Ultrasonic destroyer”. The submodel “Ultrasonic knife” have the following property: at each fixed moment of the time in the field of the existence of the solution near a some plane the pressure increases indefinitely and becomes infinite on this plane. The submodel “Ultrasonic destroyer” contains a countable number of “Ultrasonic knives”. The presence of the arbitrary constants in the integro-differential equations, that determine invariant solutions of rank 1 provides a new opportunities for analytical and numerical study of the boundary value problems for the received submodels, and, thus, for the original (KZK) model. With a help of these invariant solutions we researched a propagation of the intensive acoustic waves (one-dimensional, axisymmetric and planar) for which the acoustic pressure, speed and acceleration of its change, or the acoustic pressure , speed and acceleration of its change in the radial direction, or the acoustic pressure, speed and acceleration of its change in the direction of one of the axes are specified at the initial moment of the time at a fixed point. Under the certain additional conditions, we established the existence and the uniqueness of the solutions of boundary value problems, describing these wave processes. Mechanical relevance of the obtained solutions is as follows: (1) these solutions describe nonlinear and diffraction effects in ultrasonic fields of a special kind, (2) these solutions can be used as a test solutions in the numerical calculations performed in studies of ultrasonic fields generated by powerful emitters. Application of the obtained formula generating the new solutions for the found solutions gives families of the solutions containing three arbitrary functions.  相似文献   

3.
《Comptes Rendus Mecanique》2017,345(2):117-124
Simulations using a Restricted Nonlinear (RNL) system, where mean flow distortion resulting from Reynolds stress feedback regenerates rolls, is applied in a channel flow under subcritical conditions. This quasi-linear restriction of the dynamics is used to study invariant solutions located in the bulk of the flow found recently by Rawat et al. (2016) [14]. It is shown that the RNL system truncated to a single streamwise mode for the perturbation supports invariant solutions that are found to bifurcate from a relative periodic orbit into a travelling wave solution when the spanwise size is increasing. In particular, the travelling wave solution exhibits a spanwise localized structure that remains unchanged for large values of the spanwise extent as the invariant solution lying on the lower branch found by Rawat et al. (2016) [14]. In addition, travelling wave solutions provided by this minimal RNL system are self-similar with respect to the Reynolds number based on the centreline velocity, and the half-channel height varying from 2000 to 5000.  相似文献   

4.
Huilgol's paper [1] is discussed critically. It is shown that there are significant errors in each section of the paper. His argument depends critically on a refusal to recognize that when a statement is made that a functional of a tensor function is invariant under a group of transformations, these transformations must be constants and that otherwise the statement is meaningless. Furthermore, he consistently ignores the contradictions to which this refusal leads.  相似文献   

5.
We use the method of reduction in the angular variable to construct an infinite-dimensional invariant torus for a linear system of differential-difference equations that depends on an infinite set of constant deviations of arguments of different signs. This means that the function that defines the torus is represented in the form of the limit of a sequence of functions, each of which defines an invariant torus for the initial system reduced in the angular variable, as the order of reduction tends to infinity.  相似文献   

6.
7.
This paper presents wave analysis and control for double cascade-connected damped mass-spring systems, whose mass is connected beyond the adjacent masses. The system is motivated by a cantilevered tensegrity beam supporting tensile and compressive forces. The wave solution is derived from a recurrent formula, and the properties of the propagation constants are precisely investigated. Elimination of reflected waves provides the impedance matching controller. We show that the impedance matching controller can be constructed from a similarity transformation of the characteristic impedance matrix by a matrix composed of the propagation constants. A numerical example of vibration control of a tensegrity beam is shown.  相似文献   

8.
A reduction method is worked out for determining a class of exact solutions with inherent wave features to quasilinear hyperbolic homogeneous systems of N>2 first-order autonomous PDEs. A crucial point of the present approach is that in the process the original set of field equations induces the hyperbolicity of an auxiliary 2×2 subsystem and connection between the respective characteristic velocities can be established. The integration of this auxiliary subsystem via the hodograph method and through the use of the Riemann invariants provides the searched solutions to the full governing system. These solutions also represent invariant solutions associated with groups of translation of space/time coordinates and involving arbitrary functions that can be used for studying non-linear wave interaction. Within such a theoretical framework the two-dimensional motion of an adiabatic fluid is considered. For appropriate model pressure-entropy-density laws, we determine a solution to the governing system of equations which describes in the 2+1 space two non-linear waves which were initiated as plane waves, interact strongly on colliding but emerge with unaffected profile from the interaction region. These model material laws include the classical pressure-entropy-density law which is usually adopted for a polytropic fluid.  相似文献   

9.
Influence of a rigid-disc massive inclusion on a neighboring penny-shaped crack induced by the time-harmonic wave propagation in an infinite elastic matrix is investigated by the numerical solution of associated 3D elastodynamic problem. No restrictions on the mutual orientation of interacting objects and direction of wave incidence are assumed. The inclusion is perfectly bonded with a matrix and supposes the translations and rotations, the crack faces are load-free. Frequency-domain problem is reduced to a system of boundary integral equations (BIEs) relative to the interfacial stress jumps (ISJs) on the inclusion and the crack opening displacements (CODs). The subtraction technique in conjunction with mapping technique, under taking into account the structure of solution at the fronts of inclusion and crack, is applied for regularization of BIEs obtained. A discrete analogue of equations is constructed by using the collocation scheme. Numerical calculations are carried out for the grazing incidence of a plane P-wave on the crack, where the interacting inclusion is coplanar and perpendicular to the crack, and has the same radius. The shielding and amplification effects of inclusion are assessed by the analysis of mode-I stress intensity factor (SIF) in the crack vicinity depending on the wave number, incident wave direction, position of the crack front point, inclusion mass, crack-inclusion orientation and distance.  相似文献   

10.
Nonlinear oscillations of the vertical plane swinging spring pendulum in the resonance case are studied (frequencies ratio regarding horizontal and vertical directions is equal to 1:2). Square and cubic terms of the Hamiltonian are taken into account. Novel normal form method, i.e., the so called invariant normalization is applied to solve the stated problem. Full system of integrals exhibits equations of the normal form, and solution for the pendulum coordinates is expressed via elementary functions. Frequencies of modes of oscillations are proportional to the first power of amplitude, and not to the second power as it is exhibited by one dimensional Duffing oscillator. Amplitudes of the modes are changed periodically, and energy from one mode is transited to energy of the second one, whereas the period of oscillations depends on the initial conditions. It is illustrated that asymptotic solution with small amplitudes approximates well numerical solution of the governing equations. In addition, an example of a periodic stable solution with constant amplitudes of the oscillation modes is given. Stability of this solution is proved.  相似文献   

11.
Hyuck Chung  Colin Fox 《Wave Motion》2009,46(7):468-479
Ocean waves travel deep into ice fields in the polar regions, both affecting the formation of sea-ice and causing its break-up. Recently, it has been shown that a relatively simple linear water and bending wave theory can predict the decay rate of the wave energy travelling through fractured ice sheets and floes at the geophysically important wave periods of 6–15 s. That work used simple free-edge conditions. A possible improvement to the current model is to better represent the effective connection due to partially frozen cracks that occur in practice. The Wiener–Hopf technique gives explicit formulae for the velocity potential and surface deflection, expressed as series expansions over the modes of the elastic plate floating on water of finite depth, with the coefficients in the expansion given as functions of four constants. These constants are determined by a system of four linear equations, represented by a 4-by-4 matrix and a four-element vector. The elements of the matrix are given as explicit functions of relationship between edge conditions. General connections between ice sheets may be interpreted as a vertical and a rotational spring providing transition conditions for the shear force and the bending moment. The reflection and the transmission of waves can then be simply calculated as direct functions of the connection conditions. Conversely, reflected and transmitted waves allow complete characterization of the effective connection conditions at a material discontinuity.  相似文献   

12.
The paper is focused on a homogenization procedure for the analysis of wave propagation in materials with periodic microstructure. By a reformulation of the variational-asymptotic homogenization technique recently proposed by Bacigalupo and Gambarotta (2012a), a second-gradient continuum model is derived, which provides a sufficiently accurate approximation of the lowest (acoustic) branch of the dispersion curves obtained by the Floquet–Bloch theory and may be a useful tool for the wave propagation analysis in bounded domains. The multi-scale kinematics is described through micro-fluctuation functions of the displacement field, which are derived by the solution of a recurrent sequence of cell BVPs and obtained as the superposition of a static and dynamic contribution. The latters are proportional to the even powers of the phase velocity and consequently the micro-fluctuation functions also depend on the direction of propagation. Therefore, both the higher order elastic moduli and the inertial terms result to depend by the dynamic correctors. This approach is applied to the study of wave propagation in layered bi-materials with orthotropic phases, having an axis of orthotropy parallel to the direction of layering, in which case, the overall elastic and inertial constants can be determined analytically. The reliability of the proposed procedure is analysed by comparing the obtained dispersion functions with those derived by the Floquet–Bloch theory.  相似文献   

13.
We study long-time dynamics of abstract nonlinear second-order evolution equations with a nonlinear damping. Under suitable hypotheses we prove existence of a compact global attractor and finiteness of its fractal dimension. We also show that any solution is stabilized to an equilibrium and estimate the rate of the convergence which, in turn, depends on the behaviour at the origin of the function describing the dissipation. If the damping is bounded below by a linear function, this rate is exponential. Our approach is based on far reaching generalizations of the Ceron–Lopes theorem on asymptotic compactness and Ladyzhenskayas theorem on the dimension of invariant sets. An application of our results to nonlinear damped wave and plate equations allow us to obtain new results pertaining to structure and properties of global attractors for nonlinear waves and plates.  相似文献   

14.
A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a dissipative component, both of which experience the same total dilatation and distortion. The stress response of the purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress experiments on superficial musculoaponeurotic system and facial skin.  相似文献   

15.
A solution of Nekrasov’s integral equation is obtained, and the range of its existence in the theory of steady nonlinear waves on the surface of a finite-depth fluid is determined. Relations are derived for calculating the wave profile and propagation velocity as functions of the ratio of the liquid depth to the wavelength. A comparison is made of the velocities obtained using the linear and nonlinear theories of wave propagation.  相似文献   

16.
This paper focuses on the adaptive tracking control problem for a class of nonlinear non-strict-feedback systems. By introducing a compact set, the restrictive assumption that the lower bounds of the control gain functions must be positive constants is canceled in the proposed method, and the compact set is proved to be invariant set eventually. The functions in non-strict-feedback system are no longer required to be differentiable, and the neural networks are constructively used to deal with the unknown system functions, which contain the whole state variables of the non-strict-feedback system. Furthermore, it is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.  相似文献   

17.
The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi–Pasta–Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.  相似文献   

18.
研究了非圆截面杆中非线性扭转波动方程的精确求解问题. 利用直接积分与微分变换相结合的方法,得到了该方程的隐式通解. 通过对积分常数和方程系数的不同情形的讨论, 给出了该方程的三角函数、双曲函数、椭圆函数、指数函数以及它们的组合形式的解,分别对应于的非线性扭转波的孤立波、周期波以及冲击波等多种传播形式.  相似文献   

19.
考虑桩土相互作用效应的桩顶纵向振动时域响应分析   总被引:6,自引:0,他引:6  
在考虑桩土耦合作用以及土竖向波动效应条件下,对均质滞回材料阻尼土中弹性支承桩桩顶纵向振动时域响应进行了理论研究。首先建立了桩与滞回阻尼土在谐和振动情况下的定解问题,然后先对土层动力平衡方程进行求解并得到土体振动位移形式解,接着依据平衡条件将该形式解祸合进桩身动力平衡方程,并通过对桩动力平衡方程的求解,最终得到桩顶位移和速度频域响应解析解和半正弦脉冲激励作用下桩顶时域响应的半解析解。通过与其它相关理论解的对比验证了本文解的正确性和适用性,并基于所得解对桩顶时域响应特性进行了分析,最后将理论曲线与现场工程实测曲线进行了拟合对比,结果表明两者符合较好。  相似文献   

20.
Summary The propagation of surface waves along a mercury vapour discharge is investigated theoretically and experimentally. The classical solution of the electromagnetic problem, involving Bessel functions, is compared with a numerical solution. A density profile is used to obtain the theoretical curve that fits measured values best. A surface wave launching device with a minimum of direct radiation is applied, giving a standing wave of pure circular symmetry along the discharge tube. There is no metallic screening tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号