首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of the action of tetra- and octanuclear ruthenium catalysts for water oxidation with Ce(IV) compounds in “artificial photosynthesis” have been studied. These catalysts are formed from a complex K4[Ru2(SO4)2(μ-SO4)2(μ-O)2] · 2H2O in an acidic medium via its self-organization. A tetranuclear adamantane-like cluster Ru4O6 is obtained during the dimerization of a binuclear complex and catalyzes the four-electron water oxidation to an oxygen molecule. An octanuclear cluster Ru8O12 is formed during the tetramerization of a binuclear complex and catalyzes the eight-electron water oxidation to an oxozone molecule O4, which readily splits to two oxygen molecules.  相似文献   

2.
Two mononuclear ruthenium complexes [RuL(pic)3] ( 1 ) and [RuL(bpy)(pic)] ( 2 ) (H2L=2,6‐pyridinedicarboxylic acid, pic=4‐picoline, bpy=2,2′‐bipyridine) have been synthesized and fully characterized. Both complexes could promote water oxidation chemically and photochemically. Compared with other known ruthenium‐based water oxidation catalysts using [Ce(NH4)2(NO3)6] (CeIV) as the oxidant in solution at pH 1.0, complex 1 is one of the most active catalysts yet reported with an initial rate of 0.23 turnover s?1. Under acidic conditions, the equatorial 4‐picoline in complex 1 dissociates first. In addition, ligand exchange in 1 occurs when the RuIII state is reached. Based on the above observations and MS measurements of the intermediates during water oxidation by 1 using CeIV as oxidant, [RuL(pic)2(H2O)]+ is proposed as the real water oxidation catalyst.  相似文献   

3.
Two dinuclear and one mononuclear ruthenium complexes containing neutral polypyridyl ligands have been synthesised as pre‐water oxidation catalysts and characterised by 1H and 13C NMR spectroscopy and ESI‐MS. Their catalytic water oxidation properties in the presence of [Ce(NH4)2(NO3)6] (CeIV) as oxidant at pH 1.0 have been investigated. At low concentrations of CeIV (5 mM ), high turnover numbers of up to 4500 have been achieved. An 18O‐labelling experiment established that both O atoms in the evolved O2 originate from water. Combined electrochemical study and electrospray ionisation mass spectrometric analysis suggest that ligand exchange between coordinated 4‐picoline and free water produces Ru aquo species as the real water oxidation catalysts.  相似文献   

4.
Photostimulated oxidation of water by potassium persulfate in the presence of photosensitizer bpy3RuCl2 ? 6H2O and ruthenium catalyst Li10[{Ru4(μ-O)4(μ-OH)2(H2O)4} ? (γ-SiW10O36)2] ? 10H2O has been studied. It has been shown that the quantum yield of O2 (0.29) is much higher than the quantum yield in a similar photocatalytic system with rubidium countercations (0.09).  相似文献   

5.
The reaction of Group 4 metal alkoxides ([M(OR)4]) with the potentially bidentate ligand, 2-hydroxy-pyridine (2-HO-(NC5H4) or H-PyO), led to the isolation of a family of compounds. The products isolated from the reaction of [M(OR)4] [where M = Ti, Zr, or Hf; OR = OPri (OCH(CH3)2), OBut (OC(CH3)3), or ONep (OCH2C(CH3)3] under a variety of stoichiometries with H-PyO were identified by single crystal X-ray diffraction as [(OPri)2(PyO-κ2(O,N))Ti(μ-OPri)]2 (1), [(ONep)2Ti(μ(O)-PyO-κ2(O,N))2(μ-ONep)Ti(ONep)3] (2), [(ONep)2Ti(μ(O)-PyO-κ2(O,N))(η1(N),μ(O)-PyO)(μ-O)Ti(ONep)2]2 (2a), [H][(PyO-κ2(O,N))(η1(O)-PyO)Ti(ONep)3] (3), [(OR)2Zr(μ(O)-PyO-κ2(O,N))2(μ-OR)Zr(OR)3] (OR = OBut (4), ONep (5)), [(OR)2Zr(μ(O,N)-PyO-κ2(O,N))2(μ(O,N)-PyO)Zr(OR)3] (OR = OBut (6), ONep (7)), [[(OBut)2Zr(μ(O)-PyO-(κ2(N,O))(μ(O,N)-PyO)2Zr(OBut)](μ3-O)]2 (6a), [[(ONep)(PyO-κ2(N,O))Zr(μ(O,N)-PyO-κ2(N,O))2(μ(O)-PyO-κ2(N,O))Zr(ONep)](μ3-O)]2 (7a), [(OBut)(PyO-κ2(O,N))Zr(μ(O)-PyO-κ2(O,N))2((μ(O,N)-PyO)Zr(OBut)3] (8), [(OBut)2Hf(μ(O)-PyO-κ2(N,O))2(μ-OBut)Hf(OBut)3] (9), [(OR)2 M(μ(O)-PyO-κ2(N,O))2(μ(O,N)-PyO)M(OR)3] (OR = OBut (10), ONep (11)), and [(ONep)3Hf(μ-ONep)(η1(N),μ(O)-PyO)]2Hf(ONep)2 (12)·tol. The structural diversity of the binding modes of the PyO led to a number of novel structure types in comparison to other pyridine alkoxy derivatives. The majority of compounds adopt a dinuclear arrangement (1, 2, 411) but oxo-based tetra- (2a and 7a), tri- (12), and monomers (3) were observed as well. Compounds 112 were further characterized using a variety of analytical techniques including Fourier Transform Infrared Spectroscopy, elemental analysis, and multinuclear NMR spectroscopy.  相似文献   

6.
Ruthenium acts as a good catalyst for the racemization reaction of secondary alcohols and amines. Ruthenium-catalyzed racemization is coupled with enzymatic kinetic resolution to prepare chiral compounds in 100% theoretical yield. Ten ruthenium complexes (110) act as a good catalyst the for racemization reaction and are also compatible with DKR process. Two other ruthenium complexes [RuCl2(PPh3)3] and [Cp*RuCl(COD)] are active for racemization reaction but their successful compatibility with DKR has not yet been reported. Ru/γ-Al2O3 and Ru–HAP are the heterogeneous catalysts used for the racemization reaction. They have also not been employed for DKR process. Polymer supported ruthenium is employed as a reusable racemization catalyst for aerobic DKR of alcohols.  相似文献   

7.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

8.
Four calixarene-coordinated titanium-oxo clusters, namely, [Ti4(C6A)23-O)2(DMF)2] ( CIAC-258 ), [Ti8(H3C6A)4(C6H5PO3)82-O)4]4− ( CIAC-259 ), [Ti6(TC4A)32-O)3 (OiPr)6] ( CIAC-260 ) and [Ti6(H2TC4A)4(C6H5PO3)42-O)5(DMF)2]2− ( CIAC-261 ) were obtained, which feature sandwich-like, windmill-like, triangular, and tetrahedral structures, respectively. The polarity of the solvent determines the involvement of the auxiliary ligand phenylphosphonic acid in the formation of the products and their structures. Compounds CIAC-258 and CIAC-261 exhibit good catalytic performance in the selective oxidation of sulfides to sulfoxides with H2O2 as the oxidant, which can be attributed to the Ti active sites coordinated by exchangeable DMF molecules. Moreover, density functional theory (DFT) calculations revealed that the Ti-hydroperoxo species formed by the interaction of the Ti active site in CIAC-258 or CIAC-261 and H2O2 is the most likely catalytic active component during the catalytic sulfoxidation process.  相似文献   

9.
The state of ruthenium in conjugated phases upon extraction of trans-[Ru(15NO)(15NO2)4(OH)]2? complex with tri-n-octylphosphine oxide (TOPO) in the presence of Zn2+ and subsequent back extraction with H15NO3 and NH3(concd.) solutions was studied by 15N NMR. Binuclear complexes [Ru(NO)(NO2)5?n (μ-NO2) n?1(μ-OH)Zn(TOPO) n ] and [Ru(NO)(NO2)4?n (ONO)(μ-NO2) n?1(μ-OH)Zn(TOPO) n ], where n = 2, 3, are predominant forms in extract. Kinetic restrictions for ruthenium extraction with TOPO solution in hexane and its back extraction with aqueous solutions of nitric acid and ammonia are eliminated in the absence of direct coordination of extractant to ruthenium. fac-Dinitronitrosyl forms [Ru(NO)(H2O)3(NO2)2]+, [Ru(NO)(H2O)2(NO2)2(NO3)]0 (3 and 6 M HNO3) and [Ru(NO)(H2O)(NO2)2(NO3)2]? (6 M HNO3) prevail in nitric acid back extracts. Equilibrium constant at ambient temperature (0.05 ± 0.01) was assessed for the coordination of second nitrate ion to nitrosylruthenium dinitronitrato complex. Complex species [Ru(NO)(NO2)4(OH)]2? and [Ru(NO)(NO2)3(ONO)(OH)]2? prevail in ammonia back extract.  相似文献   

10.
The synthesis, crystal structures, IR, UV–vis, 7Li NMR spectra, electrochemical investigations, and conductivity studies of two new lithium-heptamolybdates, (NH4)4[Li2(H2O)7][Mo7O24]·H2O (1) and (NH4)3[Li3(H2O)4(μ6-Mo7O24)]·2H2O (2), are reported. In 1 the (NH4)+ and [Li2(H2O)7]2+, cations are charge balanced by the heptamolybdate anion. In 2, the [Mo7O24]6? anion is coordinated to three unique Li+ ions via a μ6-hexadentate-binding mode resulting in the formation of a two-dimensional (2-D) [Li3(H2O)4(μ6-Mo7O24)]3? anionic complex, charge neutralized by three (NH4)+ ions. The cations, anions, and the lattice water molecules in 1 and 2 are linked by weak H-bonding interactions.  相似文献   

11.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

12.
In this paper we present theoretical study of the reverse water gas shift (RWGS) reaction catalyzed by ruthenium halogen carbonyl complexes. Three mechanisms, including hydrogen chloride, formic acid and oxidation–reduction mechanism, have been explored by density functional theory. The calculations indicate that the oxidation–reduction mechanism contributes to the TDI and TDTS in the ESM TOF calculations. Bimetallic catalysts would be likely to be more highly active than monometallic catalyst for the RWGS reaction. Among bimetallic catalysts studied, both bimetallic catalysts [Ru(μ-Cl)Cl(CO)3]2 and [Ru(μ-CO)Cl(CO)3]2 shows higher activity than [Ru(μ-Cl)(CO)4]2 catalyst with [Ru(μ-CO)Cl(CO)3]2 considering as the most efficient catalyst for RWGS reaction.  相似文献   

13.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

14.
Heating cis-[Ru(S2CNMe2)2(CO)2] and [Ru3(CO)12] in xylene affords octanuclear [Ru85-S)24-S)(μ3-S)(μ-CNMe2)2(μ-CO)(CO)15] resulting from the double carbon-sulfur bond cleavage of two dithiocarbamate ligands. The structure consists of a tri-edge-bridged square of ruthenium atoms with a further ruthenium atom being bound only to the central bridging atom. Studies suggest that it may be formed via the pentanuclear intermediate [Ru54-S)2(μ-CNMe2)2(CO)11] which is formed in trace amounts.  相似文献   

15.
General conditions for the formation of heterometallic clusters by the simultaneous methanolysis of MoCl5 and MgCl2 were determined. The resultant alkalinity of the reaction solution, the Mg/Mo molar ratio, and the presence of traces of water are key factors responsible for the composition and structure of the mixed magnesium molybdenum methoxides that formed. The new decanuclear mixed-valence MoV,VI Mg oxomethoxide [MoV 4O43-O)22-O)2MoVI 2-O4(OMe)2Mg4(MeOH)63-OMe)62-OMe)8] (1) was synthesized by the reaction of lowernuclearity magnesium molybdenum oxoalkoxide complexes: NaMoV of the complex Na(MeOH)MoV 2O22-OMe)3(OMe)4 (2) and MgMoVI of the complex [MoVIO2Mg(MeOH)2-(OMe)4]2 (3). The molecular structure of 1 was determined by X-ray diffraction.  相似文献   

16.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

17.
Reaction of cis-[PtCl2(AsPh3)2] with excess sodium sulfide in benzene gave the triphenylarsine analogue of the well-known metalloligand [Pt2(μ-S)2(PPh3)4] as an orange solid.The compound was characterised by detailed mass spectrometry studies, and by conversion to various alkylated and metallated derivatives.The sulfide ligands in [Pt2(μ-S)2(AsPh3)4] are less basic than the triphenylphosphine analogue, and the complex gives a relatively weak [M+H]+ ion in the positive-ion electrospray (ESI) mass spectrum, compared with the phosphine analogue.Methylation of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with MeI gave the species [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ and [Pt2(μ-SMe)2(PPh3)3I]+, indicating a reduced tendency for the sulfide of [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ to undergo alkylation.The lability of the arsine ligands is confirmed by the reaction of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with n-butyl chloride, giving [Pt2(μ-S)(μ-SBu)(EPh3)4]+ (E = P, As), which with Me2SO4 gave a mixture of [Pt2(μ-SMe)(μ-SBu)(PPh3)4]2+ and [Pt2(μ-SMe)(μ-SBu)(AsPh3)3Cl]+.Reactivity towards 1,2-dichloroethane follows a similar pattern.The formation and ESI MS detection of mixed phosphine-arsine {Pt2S2} species of the type[Pt2(μ-S)2(AsPh3)n(PPh3)4−n] is also discussed. Coordination chemistry of [Pt2(μ-S)2(AsPh3)4] towards a range of metal-chloride substrates, forming sulfide-bridged trinuclear aggregates, has also been probed using ESI MS, and found to be similar to the phosphine analogue. The X-ray crystal structure of [Pt2(μ-S)2(AsPh3)4Pt(cod)](PF6)2 (cod = 1,5-cyclo-octadiene) has been determined for comparison with the (previously reported) triphenylphosphine analogue. ESI MS is a powerful tool in exploring the chemistry of this system; in some cases the derivatising agent p-bromobenzyl bromide is used to convert sparingly soluble and/or poorly ionising {Pt2S2} species into soluble, charged derivatives for MS analysis.  相似文献   

18.
A new zeolite-type structure is adopted by (NH4)+[M(NH3)2]+(Ge9O19)2− (M=Cu, Ag; shown in the picture). These compounds are the first microporous germanates containing a transition metal complex inside their tunnels. The large separation between the metal centers and the unhindered access of reactants to these active sites through uniformly sized channels make these materials a good point of departure for designing new catalysts.  相似文献   

19.
The syndiospecific polymerization of styrene with a new class of multinuclear transition metal catalysts in the presence of methylalumoxane and triisobutylaluminum has been investigated. The new multinuclear catalysts [(η5-C5Me5)Ti]4(μ-O)6 and [(η5-C13H17)Ti]4(μ-O)6 were received by reaction of the corresponding mononuclear compounds with water and characterized by X-ray crystal structure analysis. The molecular structure of both complexes is tetrameric with six bridging oxygen atoms between the four titanium atoms, forming an adamantane-like cage structure with a substituted cyclopentadienyl ligand remaining η5-bonded to each titanium atom.The bulky [(η5-C13H17)Ti]4(μ-O)6 shows higher polymerization conversions than [(η5-C5Me5)Ti]4(μ-O)6. The polymerization activity is significantly increased by an enhancement of the MAO concentration after a short retardation period and levels off at MAO/[(η5-C13H17)Ti]4(μ-O)6 molar ratios above about 600. Triisobutylaluminum increases the polymerization yield to a maximum at a TIBA/[(η5-C13H17)Ti]4(μ-O)6 molar ratio of about 30-100, but considerably decreases it at higher molar ratios below the polymerization conversion reached without any additional aluminum alkyl. Both compounds affect molecular weight and molecular weight distribution without any influence on the stereospecificity of the different catalytic sites active in polymerization reactions.The new multinuclear transition metal catalysts reach about 30-50% of the polymerization activity of the mononuclear catalysts on a molar basis and show a remarkably high catalytic activity in complex-coordinative polymerizations even after storage in non-inert-atmosphere conditions. The active polymerization sites of the multinuclear catalysts are not as uniform as the active sites of the mononuclear catalysts are and provide polystyrenes of a slightly lower syndiospecificity, but do not significantly influence the weight average molecular weights.  相似文献   

20.
The structures of the LiI and NaI salts of 2‐thiobarbituric acid (2‐sulfanylidene‐1‐3‐diazinane‐4,6‐dione, H2TBA) have been studied. μ‐Aqua‐octaaquabis(μ‐2‐thiobarbiturato‐κ2O:O′)bis(2‐thiobarbiturato‐κO)tetralithium(I) dihydrate, [Li4(C4H3N2O2S)4(H2O)9]·2H2O, (I), crystallizes with four symmetry‐independent four‐coordinated LiI cations and four independent HTBA anions. The structure contains two structurally non‐equivalent LiI cations and two non‐equivalent HTBA anions (bridging and terminal). Eight of the coordinated water ligands are terminal and the ninth acts as a bridge between LiI cations. Discrete [Li4(HTBA)4(H2O)9]·2H2O complexes form two‐dimensional layers. Neighbouring layers are connected via hydrogen‐bonding interactions, resulting in a three‐dimensional network. Poly[μ2‐aqua‐tetraaqua(μ4‐2‐thiobarbiturato‐κ4O:O:S:S)(μ2‐thiobarbiturato‐κ2O:S)disodium(I)], [Na2(C4H3N2O2S)2(H2O)5]n, (II), crystallizes with six‐coordinated NaI cations. The octahedra are pairwise connected through edge‐sharing by a water O atom and an O atom from the μ4‐HTBA ligand, and these pairs are further top‐shared by the S atoms to form continuous chains along the a direction. Two independent HTBA ligands integrate the chains to give a three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号