首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The ionic coefficients of the pair interionic interaction in aqueous solutions of 1–1 electrolytes at 298 K were determined from the real activity coefficients of single-charged single ions using the McMillan–Mayer formalism. Analysis of the results of calculations revealed that salt effects are stronger in the case of cations. The weakening of cation hydration (increased negative hydration) and the strengthening of anion hydration (increased positive hydration) enhance the mutual salting of cations and anions. It is shown that the structural effects of hydration produce a strong effect on the interionic interaction in solutions.  相似文献   

5.
The temperature and concentration dependences of the electrical conductance of aqueous solutions of sulfuric acid, selenic acid, and potassium tellurate were studied. The coefficients of the corresponding empirical equations were determined, and the values of equivalent conductances of the anions were evaluated at infinite dilution at the experimental temperatures. The values of the coefficients in the Fuoss and Onsager equation were evaluated for the three electrolytes at 298 K. The values of the molecular and ionic coefficients of self-diffusion at infinite dilution were calculated in the temperature range 288–318 K. The change of the translational energy Δ Etr. of water molecules in the ionic hydration sphere was determined. The number of water molecules participating in the ionic hydration sphere at 298 K and the changes of Gibbs free energy, enthalpy, and entropy of activation of ionic conductance were calculated. The results obtained were interpreted according to the Samoylov’s theory of positive and negative hydration of ions. The differences observed in the temperature dependences of the mentioned parameters were explained in terms of the different radii and hydration numbers of the ions.  相似文献   

6.
The thermodynamic theory of binary aqueous solutions of electrolytes taking into account the electrostatic interaction of ions and their hydration and association was extended to multicomponent solutions. Equations for calculating the osmotic coefficient of multicomponent solutions from parameter estimates (hydration and association numbers under standard conditions) determined for the corresponding binary subsystems were substantiated. Interval parameter estimates were used to calculate the osmotic coefficients for several three-five-component aqueous solutions containing both nonelectrolytes and electrolytes. A comparison of the results with the literature data showed that cross interactions between components could be ignored for the multicomponent solutions studied.  相似文献   

7.
In this work, the modified Wilson model was used to obtain the activity coefficients of amino acids and simple peptides in non-electrolyte aqueous solutions. The Wilson model was modified using the new local mole fraction proposed by Zhao et al. and non-random case for the reference state. The binary interaction parameters (BIP) of the modified Wilson model for amino acid–water pairs were obtained using the experimental data of the activity coefficients for amino acids available in the literature. The modified Wilson model was also used to correlate the solubility of amino acids in water and the values of Δh/R, Δs/R, and Δg/R of the solutions studied were reported. The results obtained showed that the modified Wilson model can accurately correlate the activity coefficients as well as the solubility of amino acids and simple peptides in aqueous solutions. Also the modified Wilson model was coupled with the Pazuki–Rohani model to correlate the mean ionic activity coefficients of electrolytes in aqueous amino acid solutions. The results showed that the proposed model can accurately correlate the activity coefficients of the electrolytes in aqueous amino acid solution.  相似文献   

8.
The electrical conductivity in aqueous solutions of electrolytes has been obtained in terms of inter-particle potentials and pair distribution functions, based on a generalized Langevin equation for the cation and anion. This treatment allows us to connect and compare with the work of a computer simulation where the inter-particle potentials are the only input. The results for the concentration dependence of electrical conductivity are basically represented as a function of the square root of concentration. The electrophoretic and relaxation effects are discussed from a microscopic view point. The ionic hydration in electrolytic solution is also discussed. Available inter-particle potentials in aqueous solutions of electrolytes are proposed. The numerical application is carried out for sodium chloride and other aqueous electrolyte solutions.  相似文献   

9.
A new procedure, which provides a closer approximation for the junction potentials than the Henderson equation, is tested to reduce new emf data for the chloride ion in CsCl solutions and previously measured data for individual ions in aqueous solutions of KCl, NaCl, and NaBr. The liquid junction potential is calculated from numerical integration of its basic equation without assuming constant mobility or using concentrations instead of activities. The mean ionic activity coefficients of the salts, obtained from the activity coefficients of the individual ions, show good agreement with values reported in the literature. The activity coefficients of the individual chloride ion at 25°C in aqueous solutions of CsCl up to 3 molal and in KCl solutions were measured using a chloride ion-selective electrode. It has been confirmed that the activity of the chloride ion is equal to the activity of the cation in CsCl solutions and, contrary to the prediction of hydration theory, it is higher than the activity of the cation in aqueous KCl solutions. The New Hydration Theory has been developed to overcome the shortcomings of the older hydration theory and has been used to smooth the experimental activity coefficients of the individual ions in aqueous solutions and to extrapolate them up to the saturated solution.  相似文献   

10.
Density and viscosity measurements were made for aqueous solutions of electrolytes containing 18-crown-6 (18C6) at 298.15 K. A method is proposed to extract the volumetric and viscosity data of the [18C6:M]A complexed species in aqueous solutions from ternary mixtures using the thermodynamic equilibrium constant values at 298.15 K. The apparent molar volume of the [18C6:M]A complexed species have been estimated for these binary solutions. Further, the viscosity data thus obtained were subjected to analysis using the Jones-Dole equation to get viscosity A- and B-coefficients of complexed ions in water. The hydration number and molecular radius of the hydrated complexes in water have been estimated. It was observed that hydration of the complexed ion is strongly influenced by the charge density of the metal ions in the complexed state. The self-diffusion coefficient and correlation time values for the complexes in water were calculated using viscosity data, which indicated that diffusion of complexed species was faster than that of the host ligand 18C6 (D3d structural entity) in water at 298.15 K. It was suggested that the ionic radii estimated in this work for large hydrophobic cations can be of use in studying electrostatic and hydrophobic interactions especially in aqueous solutions.  相似文献   

11.
The theory of multilayer adsorption for concentrated aqueous electrolytes developed by Ally and Braunstein (1998) is used to calculate the thermodynamic activities and osmotic coefficients of supersaturated solutions of (NH4)2SO4(aq) and NaCl (aq) which are among man-made aerosols of atmospheric importance. The basis of the model is the postulate of Stokes and Robinson that concentrated aqueous electrolytes may be viewed as an irregular ionic lattice structure. Application to the electrolytes mentioned above is a special case of the generalized results which are proven (Ally and Braunstein, Braunstein and Ally) to be consistent with the Gibbs–Duhem equation. Calculated thermodynamic properties are compared against experimental data from isopiestic and electrodynamic balance (EDB) measurements.  相似文献   

12.
Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.  相似文献   

13.
Pitzer's equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer's model (combining a long-range term, based on the Debye–Hückel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid–liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems.  相似文献   

14.
Ionic self-diffusion coefficients (D) for trivalent radiotracers, lanthanide and actinide ions have been determined in concentrated aqueous solutions of supporting electrolytes of Gd(NO3)3–HNO3 or Nd(ClO3)4–HClO4 up to 1.5 mol L?1 at 298.15 K and pH 2.50 by the open-end capillary method. The data obtained in large range of concentrations, allow to derive the limiting value D°, the validity of the Onsager limiting law and a more extended law. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and hydration number. An empirical equation is suggested for predicting ionic hydration number with a good precision.  相似文献   

15.
The development of the Modified Bromley's Methodology (MBM) is extended for the estimation of the activity coefficients of individual species in aqueous solution at 25°C in single and mixed ionic media. The estimation is compared with literature data of activity coefficients of mixtures of electrolytes in water and applied to (a) the prediction of the ionic product of water in aqueous solutions containing different salts which are commonly used as background electrolytes (NaCl, KNO3 and NaClO4) and (b) the equilibrium constants of the Cr(VI)–H2O system.  相似文献   

16.
The expression for the Gibbs energy (G) of electrolytes derived in terms of the Debye-Hückel theory is modified so as to describe the experimentally observed dependence of the hydration numbers of electrolyte ions on their concentration by minimizing G. It is shown that the activity coefficients of electrolyte solutions determined from this expression are in good agreement with experimental data over a wide concentration range.  相似文献   

17.
The relative viscosity of colloidal silica dispersion in aqueous electrolytic solutions as the function of volume fraction of dry particles in the solutions has been experimentally determined in this work, in order to study the effects of pH and electrolytes (Na2SO4 and AlCl3) on the hydration of the silica surfaces in the solutions. The results have shown that the maximum relative viscosity of the silica dispersion and the strongest hydration of the silica in aqueous solutions appeared at neutral pH, while the stronger the acidity and the alkalinity of the aqueous solution, the weaker the hydration. In the presence of the electrolytes (Na2SO4 and AlCl3), the relative viscosity of the silica dispersion reduced and the hydration of the silica in aqueous solutions became weak. The higher the concentration of the electrolytes, the weaker the hydration, indicating that the destabilization of the colloidal silica dispersion in aqueous solutions might be realized through adding the high-valence electrolytes to weaken the hydration of the particle surfaces (hydration forces between the particles). Also, it has been shown that the negative zeta potentials of the colloidal silica in aqueous solutions greatly reduced in the presence of the electrolytes. Therefore, the high-valence electrolytes (Na2SO4 and AlCl3) as the coagulant of colloidal silica in aqueous solutions might be originated from that the presence of the electrolytes simultaneously reduces the electrical double layer repulsive force and the hydration repulsive forces between the particles in aqueous solutions.  相似文献   

18.
《Fluid Phase Equilibria》2004,220(1):21-35
An equation of state that can be used for phase equilibrium and other thermodynamic property calculations at high pressures is developed for systems that contain aqueous solutions of strong electrolytes and molecular species. The proposed equation of state is based upon contributions to the Helmholtz free energy from a non-electrolyte term and three electrolyte terms. The non-electrolyte term comes from the Trebble–Bishnoi equation of state and the electrolyte terms consist of a Born energy term, a mean spherical approximation term and a newly developed hydration term. The application of the proposed equation of state to aqueous systems containing mixed salts and mixed solvents is illustrated by calculating the vapour–liquid equilibrium (VLE) and solid (Clathrate hydrate)–vapour–liquid equilibrium (SVLE) conditions for several systems. The solubility of CO2 in salt water systems is examined at elevated pressures. As well, the new equation of state is used in conjunction with the model of van der Waals and Platteeuw to predict the SVLE conditions for gas hydrate forming systems in the presence of single salts, mixed salts and a mixture of aqueous salts and methanol. It is found that the new equation of state is able to accurately represent the experimental data over a wide range of pressure, temperature and salt concentration.  相似文献   

19.
《Fluid Phase Equilibria》2006,242(1):65-71
In this study, the individual ion activity coefficient in an aqueous solution is modeled with a new model. This model contains two physical significant ionic parameters regarding the ionic solvation and the closest distance of approach between ions in a solution. The present model was evaluated by the estimation of the individual activity coefficients of the ions of thirty electrolytes in aqueous solutions. The results showed that this model suitably predicts the individual ion activity coefficients in aqueous two-electrolyte solutions consisting of the binary pairs of electrolytes of NaCl, KCl, KBr and CaCl2 in a temperature range from 298.15 to 243.15 K. The results by this model were compared to the literature values. The average absolute relative deviations of vapor pressures showed acceptable agreement between experimental data and the results of this model.  相似文献   

20.
The mean spherical approximation (MSA) model, coupled with two hard sphere models, was used to predict the activity coefficients of mixtures of electrolyte solutions at different temperatures and concentrations. The models, namely the Ghotbi-Vera-MSA (GV-MSA) and Mansoori et al.-MSA (BMCSL-MSA), were directly used without introducing any new adjustable parameters for mixing of electrolyte solutions. In the correlation step, the anion diameters were considered to be constant, whereas the cation diameters were considered to be concentration dependent. The adjustable parameters were determined by fitting the models to the experimental mean ionic activity coefficients for single aqueous electrolytes at fixed temperature. The results showed that the studied models predict accurately the activity coefficients for single electrolyte aqueous solutions at different temperatures. In the systems of binary aqueous electrolyte solutions with a common anion, the GV-MSA model has slightly better accuracy in predicting the activity coefficients. Also, it was observed that the GV-MSA model can more accurately predict the activity coefficients for ternary electrolyte solutions with a common anion, especially at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号