首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates sharp in order for Fourier widths of the classes $ B_{pq}^{sm} (\mathbb{T}^k ) $ and $ L_{pq}^{sm} (\mathbb{T}^k ) $ of Nikol??skii-Besov and Lizorkin-Triebel types, respectively, in the space $ L_r (\mathbb{T}^k ) $ are established for a certain range of the parameters s, p, q, r (here s ?? (0,??) n , 1 ??p, r, q ???, 1 ?? n ?? k, m = (m 1, ??,m n ) ?? ? n : m 1 + ?? + m n = k).  相似文献   

2.
If m ∈ ?, ? m is the additive group of the modulo m residue classes, $\mathcal{A} \subset \mathbb{Z}_m$ and n ∈ ?, ? m , then let $R\left( {\mathcal{A},n} \right)$ denote the number of solutions of a+a′ = n with $a,a' \in \mathcal{A}$ . The variation $V(\mathcal{A}) = \mathop {\max }\limits_{n \in \mathbb{Z}_m } |R(\mathcal{A},n + 1) - R(\mathcal{A},n)|$ is estimated in terms of the number of a’s with $a - 1 \notin \mathcal{A}$ , $a \in \mathcal{A}$ .  相似文献   

3.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

4.
In this paper we construct the matrix subalgebras ${L_{r,s}(\mathbb{R})}$ of the real matrix algebra ${M_{2^{r+s}} (\mathbb{R})}$ when 2 ≤ r + s ≤ 3 and we show that each ${L_{r,s}(\mathbb{R})}$ is isomorphic to the real Clifford algebra ${\mathcal{C} \ell_{r,s}}$ . In particular, we prove that the algebras ${L_{r,s}(\mathbb{R})}$ can be induced from ${L_{0,n}(\mathbb{R})}$ when 2 ≤ rsn ≤ 3 by deforming vector generators of ${L_{0,n}(\mathbb{R})}$ to multiply the specific diagonal matrices. Also, we construct two subalgebras ${T_4(\mathbb{C})}$ and ${T_2(\mathbb{H})}$ of matrix algebras ${M_4(\mathbb{C})}$ and ${M_2(\mathbb{H})}$ , respectively, which are both isomorphic to the Clifford algebra ${\mathcal{C} \ell_{0,3}}$ , and apply them to obtain the properties related to the Clifford group Γ0,3.  相似文献   

5.
Let f be an holomorphic endomorphism of ${\mathbb{P}^k}$ and μ be its measure of maximal entropy. We prove an almost sure invariance principle for the systems ${(\mathbb{P}^k,f,\mu)}$ . Our class ${\mathcal {U}}$ of observables includes the Hölder functions and unbounded ones which present analytic singularities. The proof is based on a geometric construction of a Bernoulli coding map ${\omega: (\Sigma, s, \nu) \to (\mathbb{P}^k,f,\mu)}$ . We obtain the invariance principle for an observable ψ on ${(\mathbb{P}^k,f,\mu)}$ by applying Philipp–Stout’s theorem for ${\chi = \psi \circ \omega}$ on (Σ, s, ν). The invariance principle implies the central limit theorem as well as several statistical properties for the class ${\mathcal {U}}$ . As an application, we give a direct proof of the absolute continuity of the measure μ when it satisfies Pesin’s formula. This approach relies on the central limit theorem for the unbounded observable log ${{\tt Jac}\, f \in \mathcal{U}}$ .  相似文献   

6.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

7.
Using elementary arguments based on the Fourier transform we prove that for ${1 \leq q < p < \infty}$ and ${s \geq 0}$ with s > n(1/2 ? 1/p), if ${f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}$ , then ${f \in L^p(\mathbb{R}^n)}$ and there exists a constant c p,q,s such that $$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$ where 1/pθ/q + (1?θ)(1/2?s/n). In particular, in ${\mathbb{R}^2}$ we obtain the generalised Ladyzhenskaya inequality ${\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}$ .We also show that for s = n/2 and q > 1 the norm in ${\| f \|_{\dot{H}^{n/2}}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.  相似文献   

8.
In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

9.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

10.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

11.
We consider the spaces A p ( $\mathbb{T}^m $ ) of functions f on the m-dimensional torus $\mathbb{T}^m $ such that the sequence of Fourier coefficients $\hat f = \{ \hat f(k),k \in \mathbb{Z}^m \} $ belongs to l p (? m ), 1 ≤ p < 2. The norm on A p ( $\mathbb{T}^m $ ) is defined by $\left\| f \right\|_{A_p (\mathbb{T}^m )} = \left\| {\hat f} \right\|_{l^p (\mathbb{Z}^m )} $ . We study the rate of growth of the norms $\left\| {e^{i\lambda \phi } } \right\|_{A_p (\mathbb{T}^m )} $ as |λ| → ∞, λ ∈ ?, for C 1-smooth real functions φ on $\mathbb{T}^m $ (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces A p (? m ).  相似文献   

12.
Homotopy methods are used to find sufficient conditions for the solvability of nonlinear boundary value problems of the form $$(\phi(u^\prime))^\prime = f(t, u, u^\prime), \quad g(u(\alpha), \phi(u^\prime(\beta))) = 0,$$ where (α, β) = (0, 1), (1, 0), (0, 0) or (1, 1), ${\phi}$ is a homeomorphism from the open ball ${B(a) \subset \mathbb{R}^n}$ onto ${\mathbb{R}^n}$ , f is a Carathéodory function, ${g : \mathbb{R}^n \times \, \mathbb{R}^n \rightarrow \mathbb{R}^m}$ is continuous and m ≤ 2n.  相似文献   

13.
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold ${G_{n}\left(\mathbb{K}^{d}\right) }$ ( ${\mathbb{K=\mathbb{R}}}$ or ${\mathbb{C}}$ ). This invariant fully characterizes the p-tuple. We use it to classify the regular p-tuples of ${G_{2}\left(\mathbb{R}^{d}\right) }$ , ${G_{3}\left( \mathbb{R}^{d}\right) }$ and ${G_{2}\left( \mathbb{C}^{d}\right) }$ .  相似文献   

14.
The main purpose of this paper is to study certain algebraic structures induced by directed graphs. We have studied graph groupoids, which are algebraic structures induced by given graphs. By defining a certain groupoid-homomorphism ?? on the graph groupoid ${\mathbb{G}}$ of a given graph G, we define the diagram of G by the image ${\delta(\mathbb{G})}$ of ??, equipped with the inherited binary operation on ${\mathbb{G}}$ . We study the fundamental properties of the diagram ${\delta(\mathbb{G})}$ , and compare them with those of ${\mathbb{G}}$ . Similar to Cho (Acta Appl Math 95:95?C134, 2007), we construct the groupoid von Neumann algebra ${\mathcal{M}_{G}=vN(\delta(\mathbb{G}))}$ , generated by ${\delta(\mathbb{G})}$ , and consider the operator algebraic properties of ${\mathcal{M}_{G}}$ . In particular, we show ${\mathcal{M}_{G}}$ is *-isomorphic to a von Neumann algebra generated by a family of idempotent operators and nilpotent operators, under suitable representations.  相似文献   

15.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

16.
We obtain an upper estimate for the Poisson kernel for the class of second-order left invariant differential operators on the semi-direct product of the 2n?+?1-dimensional Heisenberg group ${\mathcal H_n}$ and an Abelian group ${A = \mathbb {R}^k.}$ We also give an upper estimate for the transition probabilities of the evolution on ${\mathcal H_{n}}$ driven by the Brownian motion (with drift) in ${\mathbb {R}^k.}$   相似文献   

17.
We consider nonautonomous semilinear evolution equations of the form $$\frac{dx}{dt}= A(t)x+f(t,x) . $$ Here A(t) is a (possibly unbounded) linear operator acting on a real or complex Banach space $\mathbb{X}$ and $f: \mathbb{R}\times\mathbb {X}\to\mathbb{X}$ is a (possibly nonlinear) continuous function. We assume that the linear equation (1) is well-posed (i.e. there exists a continuous linear evolution family {U(t,s)}(t,s)∈Δ such that for every s∈?+ and xD(A(s)), the function x(t)=U(t,s)x is the uniquely determined solution of Eq. (1) satisfying x(s)=x). Then we can consider the mild solution of the semilinear equation (2) (defined on some interval [s,s+δ),δ>0) as being the solution of the integral equation $$x(t) = U(t, s)x + \int_s^t U(t, \tau)f\bigl(\tau, x(\tau)\bigr) d\tau,\quad t\geq s . $$ Furthermore, if we assume also that the nonlinear function f(t,x) is jointly continuous with respect to t and x and Lipschitz continuous with respect to x (uniformly in t∈?+, and f(t,0)=0 for all t∈?+) we can generate a (nonlinear) evolution family {X(t,s)}(t,s)∈Δ , in the sense that the map $t\mapsto X(t,s)x:[s,\infty)\to\mathbb{X}$ is the unique solution of Eq. (4), for every $x\in\mathbb{X}$ and s∈?+. Considering the Green’s operator $(\mathbb{G}{f})(t)=\int_{0}^{t} X(t,s)f(s)ds$ we prove that if the following conditions hold
  • the map $\mathbb{G}{f}$ lies in $L^{q}(\mathbb{R}_{+},\mathbb{X})$ for all $f\in L^{p}(\mathbb{R}_{+},\mathbb{X})$ , and
  • $\mathbb{G}:L^{p}(\mathbb{R}_{+},\mathbb{X})\to L^{q}(\mathbb {R}_{+},\mathbb{X})$ is Lipschitz continuous, i.e. there exists K>0 such that $$\|\mathbb{G} {f}-\mathbb{G} {g}\|_{q} \leq K\|f-g\|_{p} , \quad\mbox{for all}\ f,g\in L^p(\mathbb{R}_+,\mathbb{X}) , $$
then the above mild solution will have an exponential decay.  相似文献   

18.
Let $X^{k}_{m,n}=\Sigma^{k} (\mathbb{R}\mathbb{P}^{m}/\mathbb{R}\mathbb{P}^{n})$ . In this note we completely determine the values of k, m, n for which the total Stiefel–Whitney class w(ξ)=1 for any vector bundle ξ over  $X^{k}_{m,n}$ .  相似文献   

19.
Starting from two Lagrangian immersions and a Legendre curve ${\tilde{\gamma}(t)}$ in ${\mathbb{S}^3(1)}$ $({\rm or\,in}\,{\mathbb{H}_1^3(-1)})$ , it is possible to construct a new Lagrangian immersion in ${\mathbb{CP}^n(4)}$ $({\rm or\,in}\,{\mathbb{CH}^n(-4)})$ , which is called a warped product Lagrangian immersion. When ${\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i(- \frac{r_1}{r_2}at)})}$ $({\rm or}\,{\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i( \frac{r_1}{r_2}at)})})$ , where r 1, r 2, and a are positive constants with ${r_1^2+r_2^2=1}$ $({\rm or}\,{-r_1^2+r_2^2=-1})$ , we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of ${\mathbb{CP}^n(4)}$ or ${\mathbb{CH}^n(-4)}$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.  相似文献   

20.
We provide a sufficient condition for the nontriviality of the Lipschitz homotopy group of the Heisenberg group, ${\pi_m^{\rm Lip}(\mathbb{H}_n)}$ , in terms of properties of the classical homotopy group of the sphere, ${\pi_m(\mathbb{S}^n)}$ . As an application we provide a new simplified proof of the fact that ${\pi_n^{\rm Lip}(\mathbb{H}_n)\neq \{0\}, n=1,2,\ldots}$ , and we prove a new result that ${\pi_{4n-1}^{\rm Lip}(\mathbb{H}_{2n})\neq \{0\}}$ for n = 1,2,… The last result is based on a new generalization of the Hopf invariant. We also prove that Lipschitz mappings are not dense in the Sobolev space ${W^{1,p}(\mathcal{M},\mathbb{H}_{2n})}$ when ${\dim \mathcal{M} \geq 4n}$ and 4n?1 ≤  p < 4n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号