首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The solubility products of ZnO (pL = 10.0 ± 0.5) and CdO (pL = 6.8 ± 0.2) in CsI melt at 700°C are determined by potentiometric titration with the use of a Pt(O2)|ZrO2(Y2O3) membrane oxygen electrode. In the Zn-Cd family, metal oxide solubilities grow with increasing metal cation radius. The solubilities in an iodide melt are much lower than in a chloride melt due to a higher basicity of the former; for the Cd2+ cation, the difference between solubilities in these melts is lower owing to the formation of Cd2+-I (soft acid-soft base) complexes.  相似文献   

2.
The equilibrium CO32− = CO2+O2− (pK) in molten potassium halides (KCl, KBr and KI) and KCl-NaCl eutectic at 800°C was investigated to compare the oxoacidic properties of the melts. A potentiometric cell involving Pt(O2)|ZrO2(Y2O3) membrane oxygen electrode was used to detect the equilibrium O2− molalities. The obtained pK values were 3.2±0.2 (KCl), 2.4±0.2 (KBr), 4.4±0.2 (KI) and 3.6±0.2 (KCl-NaCl) allowing arrangement of the melts studied in the following sequence: KI–KCl-NaCl–KCl–KBr with the melt acidities increasing within 2 pI units. The oxides solubilities were found to decrease sequentially from the chloride to the iodide melt.  相似文献   

3.
The solubility product of EuO (pP EuO = 8.65 ± 0.5) and its dissociation constant (pK EuO = 5.67 ± 0.5) in NaI melts at 700°C have been determined by potentiometric titration with the use of a Pt(O2)|ZrO2(Y2O3) membrane oxygen electrode. Estimated on the basis of these parameters, the total solubility of EuO in NaI melts (1.12 × 10−3 mol/kg, logs EuO = −2.95) is close to the value obtained by the consecutive additions method (2.8 × 10−3 mol/kg, logs EuO = −2.55). The values obtained show that Eu2+ (EuI2) is a stable cationic activator in NaI melt, but it yet cannot be recommended as an agent for the removal of oxygen-containing admixtures from this melt.  相似文献   

4.
ZnO solubility (pP = 4.77 ± 0.1) and CdO solubility (pP = 1.46 ± 0.1) in KCl-LiCl melts at 700°C are determined using the sequential additions method with the potentiometric control of the equilibrium oxide ion concentration. Cadmium oxide is a strong base; it fully dissociates in unsaturated solutions. Zinc oxide is a weak base (pK ZnO = 2.89 ± 0.15). As the acidic properties of an ionic solvent strengthen with a fixed anionic composition, the solubilities of the oxides increase in correlation with their basicity index; the surface energy at the interface between the solid oxide and ionic melt decreases in association.  相似文献   

5.
The kinetics of the Fe(II) reduction of trans-chloro, bromo and iodopyridinebis(dimethylglyoximato)Co(III) have been studied at 30.0±0.1°C and I = 1.0 mol. dm−3(NaClO4) in the [H+] range 0.0043–0.115 mol. dm−3. The reaction showed an inverse dependence on [H+]. The second order rate constant could be expressed in the form kII = k1 + k2(1 + KB[H+])−1. The kinetic data were found to be: Co(DH)2(py)Cl−k1 = 0.051 ±0.003 dm3 mol−1s−1, 0.051±0.003 dm3 mol−1 s−1,k2 = 0.76±0.04 dm3 mol−1 s−1 KB = 325±8 dm3 mol−1;Co(DH)2(py)Br-k1 = 0.071±0.004 dm3mol−1 s−1,k2 = 1.21±0.04 dm3 mol−1 s−1 KB = 460±15 dm3 mol−1; Co(DH)2(py)I-k1 = 0.075±0.006 dm3 mol−1 s−1,k2 = 1.91±0.09 dm3 mol−1 s−1 KB = 625±30 dm3 mol−1. The inverse dependence on [H+] suggests an inner-sphere mechanism involving protonated and unprotonated species of the complex. The order of rates for the three complexes was found to be Co(DH)2(py)I > Co(DH)2(py)Br > Co(DH)2(py)Cl.  相似文献   

6.
Some heterogeneous reactions of oxide ion exchange (carbonate ion dissociation and magnesium oxide dissolution) in the molten {KCl + LiCl} eutectic at temperatures of (873, 973 and 1073) K were studied using an electrochemical cell with an oxygen membrane electrode Pt(O2)|ZrO2(Y2O3). The dissociation constant of the CO32− was found to increase with increasing temperature: pK (873 K)=(2.39 ± 0.05); pK (973 K)=(1.81 ± 0.09); pK (1073 K)=(1.53 ± 0.08). Removal of CO2 from the gas above the melt allows the complete transformation of CO32− to O2−. pPMgO values decrease more from (6.99 ± 0.08) to (5.41 ± 0.04). The oxobasicity indices, pI(KCl+LiCl), were calculated from the solubility data to be 3.2 at 873 K, 3.4 at 973 K, and 3.6 at 1073 K. This trend suggests an increase in acidity with increasing temperature of {KCl + LiCl}.  相似文献   

7.
《Chemical physics letters》1986,126(5):421-426
SeS radicals generated in a fast flow system were excited to their b0+, ν' = 0 vibronic state by absorption of Raman-shifted dye laser pulses at 1280 nm. From time-resolved measurements of the b0+ → X10+ fluorescence as a function of added gas pressure, the radiative lifetime of the b0+ = 0 state (τ0 = 400 ± 100 μs) and quenching rate constants for H2, D2, N2, CO, O2, and CO2 were deduced. Quenching of SeS(b0+, ν'= 0) by O2 is attributed to the near-resonant electronic- to-electronic energy-transfer process (1), SeS(b0+, ν'1 = 0) + O2(X3Σg, ν″1 = 0) ⇌ SeS(X10+, ν″f = 0) + O2(a1Δg, ν'f = 0)−77 cm−1, for which (k1 = (1.4±0.3) × 10−12 cm3 s−1 was obtained. On the assumption of detailed balancing, k−1 was calculated to be (3.0 ± 0.7) × 10−12cm3 s−1.  相似文献   

8.
Alkali niobates and tantalates are currently important lead‐free functional oxides. The formation and decomposition energetics of potassium tantalum oxide compounds (K2O?Ta2O5) were measured by high‐temperature oxide melt solution calorimetry. The enthalpies of formation from oxides of KTaO3 perovskite and defect pyrochlores with K/Ta ratio of less than 1 stoichiometry—K0.873Ta2.226O6, K1.128Ta2.175O6, and K1.291Ta2.142O6—were experimentally determined, and the values are (?203.63±2.92) kJ mol?1 for KTaO3 perovskite, and (?339.54±5.03) kJ mol?1, (?369.71±4.84) kJ mol?1, and (?364.78±4.24) kJ mol?1, respectively, for non‐stoichiometric pyrochlores. That of stoichiometric defect K2Ta2O6 pyrochlore, by extrapolation, is (?409.87±6.89) kJ mol?1. Thus, the enthalpy of the stoichiometric pyrochlore and perovskite at K/Ta=1 stoichiometry are equal in energy within experimental error. By providing data on the thermodynamic stability of each phase, this work supplies knowledge on the phase‐formation process and phase stability within the K2O?Ta2O5 system, thus assisting in the synthesis of materials with reproducible properties based on controlled processing. Additionally, the relation of stoichiometric and non‐stoichiometric pyrochlore with perovskite structure in potassium tantalum oxide system is discussed.  相似文献   

9.
The dissociation of CO32− (pK = 2.4 ± 0.2) and precipitation of MgO (pL MgO = 10.66 ± 0.1) in a KBr melt at 800°C were studied potentiometrically with the use of a Pt(O2)|ZrO2|(Y2O3) membrane oxygen electrode. The direct calibration of the electrochemical circuit allowed only the equilibrium concentration of O2− (of strong bases) to be determined in the melt. The total concentration of oxygen-containing impurities, including CO32− and CO42− weak bases, can be found by the potentiometric titration of a sample of KBr by adding MgCl2 (Mg2+), a strong Lux-Flood acid, which causes the decomposition of these oxygen-containing anions. This reaction can also be used to remove oxo anions from alkali metal halide melts.  相似文献   

10.
Ferrites YbSrFe2O5.5 and YbBaFe2O5.5 are prepared by reacting ytterbium(III) oxide and iron(III) oxide with strontium or barium carbonate in the solid phase. The ferrites crystallize in the orthorhombic system as shown by indexing of their X-ray diffraction patterns with homology modeling: for YbSrFe2O5.5, a = 10.74 ± 0.006 Å, b = 10.93 ± 0.006 Å, c = 16.64 ± 0.046 Å, V 0 = 1953.3 Å3, Z = 16, V subcell 0 = 122.08 Å3, ρX-ray = 6.26 g/cm3, ρpycn = 6.18 ± 0.9 g/cm3; for YbaBaFe2O5.5, a = 10.74 ± 0.013 Å, b = 10.99 ± 0.004 Å, c = 17.16 ± 0.017 Å, V 0 = 2025.4 Å3, Z = 16, V subcell 0 = 126.59 Å3, ρX-ray = 6.69 g/cm3, ρpycn = 6.40 ± 0.32 g/cm3. The calorimetric heat capacities of the ferrites are studied from 298.15 to 673 K. The C p o f(T) curves show λ peaks at 448 K for YbSrFe2O5.5 and at 373 K for YbBaFe2O5.5, likely, due to second-order phase transitions. The dielectric constants and electrical resistances of the ferrites are studied as functions of temperature from 293 to 493 K.  相似文献   

11.
The photoexcited triplet state of phenazine in toluene glasses at 35 K is investigated by light modulation-EPR spectroscopy. From the transient EPR spectra and the kinetics in the three canonical orientations (p = x, y, z) the rate parameters are determined. Thus, the depopulation rate constants kp, the anisotropic spin lattice relaxation rate constants Wp, and the ratios between the population constants Ap are calculated: kx = (2.2 ± 0.3) × 102 s?1, ky = (0.21 ± 0.04) × 102 s?1, kz = (0.06 ± 0.03) × 102 s?1, Wx = (8.6 ± 0.9) × 103 s?1, Wy = (11.0 ± 1.0) × 103 s?1, Wz = (14.0 ± 1.4) × 103 s?1, and Ax: Ay:Az ≈ 1:0.04:0.02. It is concluded therefore that the in-plane spin state |τx > is the active one.  相似文献   

12.
The kinetics of vapor nitration of cellulose with nitric anhydride at various pressures was studied under conditions of natural convection in the absence of air, using the nonisothermal kinetic method. The process rate was found to be proportional to the N2O5 pressure. The nitration is described by a law of the dη/dt =k 1/(1+βν) type, wherek 1 = 103.82±0.5 exp[-(36000±(RT)]p N 2O5 s?1. β = 10?7.33±1.4exp[(41300±8000)/(RT)] s?1, s?1, within the extents of conversion from 0.04 to 0.4. At high levels of conversion, the nitration occurs with autoacceleration caused by the accumulation of the HNO3 formed. The diffusion mechanism of vapor nitration of cellulose was suggested and discussed. The values of the effective diffusion constant for N2O5 in cellulose and the corresponding activation energy (38.4±2.8 kJ mol?1) have been estimated.  相似文献   

13.
Chemiluminescence from the b 0+ → X1 0+ band system of AsI and of the b 0+ → X1 0+, X2 1 systems of SbI in the near-infrared spectral region has been observed in a discharge flow system. Analysis of the spectra led to the spectroscopic constants (in cm?1) of AsI: ωe(X1, X2) = 257 ± 2, ωexe(X1, X2) = 0.82 ± 0.2, Te(b 0+) = 11738 ± 5, ωe(b 0+) = 271 ± 2, ωexe(b 0+) = 0.66 ± 0.2, and of SbI: Te(X2 1) = 965 ± 10, ωe(X1, X2) = 206 ± 6, Te(b 0+) = 12328 ± 10, ωe(b 0+) = 211 ± 6. The intensity ratio of the two sub-systems b 0+ → X2 1 and b 0+→ X1 0+ was found to be ≈0.013 in the case of SbI and ? 0.01 for AsI.  相似文献   

14.
Rate constants for reactions of benzyl, o-niethylbenzyl and p-meihylbenzyl radicals with O2 and NO have been measured at room temperature. The radicals were generated by UV flash photolysis and the time decay measured by absorption at ≈ 300 nm. The rate constants are: benzyl (0.99 ± 0.07 and 9.5 ± 1.2), o-methylbenzyl (1.2 ± 0.07 and 8.6 ± 0.8) and p-mithyl-benzyl (1.1= 0.10 and 8.9 = 0.9) for O2 and NO respectively in units of 10?12 cm3 molecule?1 s?1.  相似文献   

15.
The primary redox reactions for solid-state ion-selective electrodes prepared from electronically semiconducting salts of 7,7,8,8-tetracyanoquinodimethane (tcnq) can be identified by considering the redox properties of their constituent ions or molecules. Three different processes involving the couples, Mn+/M0, 2tcnqo/(tcnq-)2 and (tcnq-)2/2tcnq2- are possible depending on salt composition. Ionic product values determined by potentiometric and atomic absorption methods are in excellent agreement for several such salts; Ks(K2tcnq2)=5.8±1.2·10-11(pot.), 1.7±1·10-11 (a.a.s.); Ks(Cdtcnq2) = 3.0±0.5·10-9 (pot.), 2.9±0.3·10-9(a.a.s.); Ks(Pbtcnq2) = 1.3±0.3·10-10 (pot.), 0.96±0.2·10-10(a.a.s.); and indicate that the lower activity limit for electrode response is controlled by the solubility of the sensor material itself. Comparisons of predicted and observed standard electrode potentials provide quantitative support for an ion-exchange mechanism of interference. The behaviour of electrodes prepared from Cu2tcnq2 (copper(I)) and Cutcnq2 (copper(II)) is explained on the basis of an interference mechanism and considerations of solid-state equilibria.  相似文献   

16.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

17.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

18.
The acid dissociation constants of form pK1 = 7.34 ± 0.01, pK2 = 7.84 ± 0.01, pK3 = 8.77 ± 0.01, pK4 = 9.49 ± 0.01, and pK5 = 10.70 ± 0.02 of cationic amikacin are determined by pH-metric titration at 25°C against the background of 0.1 mol/L KNO3. K1, K2, K3, and K4 correspond to the dissociation of protons coordinated to amino groups, while K5 characterizes the dissociation of the hydroxyl hydrogen atom, testifying to the amphoteric character of amikacin molecules. Applying density functional theory (DFT) with the B3LYP hybrid functional and the 6-311G**++ basis set, the partial charges on the atoms of an amikacin molecule are calculated. It is concluded that the dissociation of H(55)hydrogen atom occurs with a greatest partial charge of +0.53631.  相似文献   

19.
The complexation of 1-methyl-2-hydroxymethyl-imidazole (L) with Cu(I) and Cu(II) has been studied in aqueous acetonitrile (AN). Cu(I) forms three complexes, Cu(AN)L+, CuL2+, and Cu(AN)H?1L, with stability constants logK(Cu(AN)+ + L ? Cu(AN)L+) = 4.60 ± 0.02, logβ2 = 11.31 ± 0.04, and logK(Cu(AN)H?1L+H+ ? Cu(AN)L+) = 10.43 ± 0.08 in 0.15M AN. The main species for Cu(II) are CuL2+, CuH?1L+, CuH?1L2+, and CuH?2L2. The autoxidation of CuL2+ was followed with an oxygen sensor and spectrophotometrically. Competition between the formation of superoxide in a one-electron reduction of O2 and a path leading to H2O2 via binuclear (CuL2)2O was inferred from the rate law with ka = (2.31 ± 0.12) · 104M ?2S ?1, kb = (1.0 ± 0.2) · 103M ?1, kc = (2.85 ± 0.07) · 102M ?2S ?1, kd = 3.89 ± 0.14M ?1S ?1, ke = 0.112 ± 0.004, kf = (2.06 ± 0.24) · 10?10M S ?1, kg = (1.35 ± 0.07) · 10?7 S ?1, and kh = (6.8 ± 1.4) · 10?7M ?1 S ?1.  相似文献   

20.
The kinetics of the peroxy radicals RHFO2 reactions with NO has been studied by using pulse radiolysis and UV absorption spectroscopy. The rate constants of interaction of oxygen atoms with NO − k 2 = 2.2±0.2·10−12 cm3·s−1 and NO2k 3 = 2.1±0.2·10−11 cm3·s−1 were found in agreement with the literature values. The bath gases (SF6 or CO2) have got minor effect on the rate constants of RHFO2+NO→NO2+prod. reactions; RHFO2 = CH3CH2O2, CH3CHFO2, CH3CF2O2, CF3CH2O2, CF3CHFO2. The obtained rate coefficients are in the scope of the literature values, although they are lower than those recommended in NIST database. The reasons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号