首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quasiparticle pattern advanced in Landau’s first article on Fermi-liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi-Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.  相似文献   

2.
We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier at the center. In this system, when unbalanced by gate depletion, two sets of quantum oscillations are observed at temperatures T≳30 mK: one originates from the upper electron subband in the closer-to-the-gate part of the well, and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors υ=1 and υ=2, both the presence of a common gap down to the point of the one-to two-subband transition and their nontrivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 8, 563–568 (25 April 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

3.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

4.
V. A. Khodel 《JETP Letters》2007,86(11):721-726
Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction. The text was submitted by the author in English.  相似文献   

5.
We consider a system of N non-relativistic spinless quantum particles (“electrons”) interacting with a quantized scalar Bose field (whose excitations we call “photons”). We examine the case when the velocity v of the electrons is small with respect to the one of the photons, denoted by c (v/c = ε ≪ 1). We show that dressed particle states exist (particles surrounded by “virtual photons”), which, up to terms of order (v/c)3, follow Hamiltonian dynamics. The effective N-particle Hamiltonian contains the kinetic energies of the particles and Coulomb-like pair potentials at order (v/c)0 and the velocity dependent Darwin interaction and a mass renormalization at order (v/c)2. Beyond that order the effective dynamics are expected to be dissipative. The main mathematical tool we use is adiabatic perturbation theory. However, in the present case there is no eigenvalue which is separated by a gap from the rest of the spectrum, but its role is taken by the bottom of the absolutely continuous spectrum, which is not an eigenvalue. Nevertheless we construct approximate dressed electron subspaces, which are adiabatically invariant for the dynamics up to order . We also give an explicit expression for the non-adiabatic transitions corresponding to emission of free photons. For the radiated energy we obtain the quantum analogue of the Larmor formula of classical electrodynamics.  相似文献   

6.
The magnetoresistance (MR) of CeCoIn5 is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.  相似文献   

7.
We observe and explain a universal scaling rhochi = const for the electrical resistivity rho with the inverse magnetic susceptibility chi(-1) for the Kondo insulator CeRhSb(1-x)Snx. In the regime where the Kondo gap disappears (x > 0.12), the system forms a non-Fermi liquid (NFL), which transforms into a Fermi liquid at higher temperature. The NFL behavior is associated with the presence of a novel quantum critical point (QCP) at the Kondo insulator-correlated metal boundary. The divergent behavior of the resistivity, the susceptibility, and the specific heat has been observed when approaching the QCP from the metallic side and is interpreted as due to the competition between the Kondo and the intersite magnetic correlations.  相似文献   

8.
Many researchers have pointed out that there is a quantum critical point (QCP) in the F‐doped SmOFeAs system. In this paper, the electronic structure and local structure of the superconductive FeAs layer in SmO1–xFxFeAs as a function of the F‐doping concentration have been investigated using Fe and As K‐edge X‐ray absorption spectroscopy. Experiments performed on the X‐ray absorption near‐edge structure showed that in the vicinity of the QCP the intensity of the pre‐edge feature at the Fe‐edge decreases continuously, while there is a striking rise of the shoulder‐peak at the As edge, suggesting the occurrence of charge redistribution near the QCP. Further analysis on the As K‐edge extended X‐ray absorption fine structure demonstrated that the charge redistribution originates mostly from a shortening of the Fe—As bond at the QCP. An evident relationship between the mysterious QCP and the fundamental Fe—As bond was established, providing new insights on the interplay between QCP, charge dynamics and the local structural Fe—As bond in Fe‐based superconductors.  相似文献   

9.
5D superconformal theories involve vacuum valleys characterized in the simplest case by the vacuum expectation value of the real scalar field σ. If 〈σ〉 ≠ 0, conformal invariance is spontaneously broken and the theory is not renormalizable. In the conformally invariant sector 〈σ〉 = 0, the theory is intrinsically nonperturbative. We study classical and quantum dynamics of this theory in the limit when field dependence of the spatial coordinates is disregarded. The classical trajectories “fall” on the singularity at σ = 0. The quantum spectrum involves ghost states with negative energies unbounded from below, but such states fail to form complete 16-plets as is dictated by the presence of four complex supercharges and should be rejected for that reason. Physical excited states come in supermultiplets and have all positive energies.We conjecture that the spectrum of the complete field theory Hamiltonian also becomes positive definite (ghost-free) when invoking supersymmetry considerations.We speculate that the ghosts in higher derivative supersymmetric field theories are exterminated by a similar mechanism. The text was submitted by the author in English. On leave of absence from ITEP, Moscow, Russia  相似文献   

10.
The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 × 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 × 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t′) and third (t″) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level.  相似文献   

11.
Using multifractal analysis we study extended, self-similar and non-self-similar type of wave functions in the Fibonacci model. Extended states arising due to commutation of transfer matrices for certain blocks of atoms in quasiperiodic systems are shown to have the same signature as the Bloch states in terms of the singularity spectrum withf(α)=α=1. Numerically, however, the extended states show a typical multifractal behaviour for finite chain lengths. Finite size scaling corrections yield results consistent with that obtained analytically. The self-similar states at the band edges show a multifractal behaviour and they are energy dependent in the case of blocks of atoms arranged in a Fibonacci sequence. For non-self-similar states we obtain a non-monotonic behaviour off(α) as a function of the chain length. We also show that in cases where extended states exist, the cross-over from extended to non-self-similar states in gradual.  相似文献   

12.
We propose a theory describing low-temperature properties of magnets with integer spin and large single-ion easy-plane anisotropy D in magnetic field H directed parallel to the hard axis. Considering the exchange interaction between spins as a perturbation and using the bosonic spin representation proposed in our recent paper [1] we find thermal corrections to the elementary excitation spectrum, magnetization and specific heat in the vicinity of the quantum critical point (QCP) H = H c1(0) ∼ D in the first nonvanishing orders of the perturbation theory. An expression is found for the boundary of the paramagnetic phase H c1(T) in the H-T plane. The effective interaction between bosons is derived near the QCP. The proposed theory describes well experimental data obtained in NiCl2-4SC(NH2)2 (DTN).  相似文献   

13.
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.  相似文献   

14.
Electron-H2S collision process is studied using the R-matrix method. Nine low-lying states of H2S molecule are considered in the R-matrix formalism to obtain elastic integral, differential, momentum transfer and excitation cross sections for this scattering system. We have represented our target states using configuration interaction (CI) wavefunctions. We obtained adequate representation of vertical spectrum of the target states included in the scattering calculations. The cross sections are compared with the experiment and other theoretical results. We have obtained good agreement for elastic and momentum transfer cross sections with experiment for entire energy range considered. The differential cross sections are in excellent agreement with experiment in the range 3–15 eV. A prominent feature of this calculation is the detection of a shape resonance in 2B2 symmetry which decays via dissociative electron attachment (DEA). Born correction is applied for the elastic and dipole allowed transition to account for higher partial waves excluded in the R-matrix calculation. The electron energy range is 0.025–15 eV.  相似文献   

15.
We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.  相似文献   

16.
We have studied the spectrum of surface electron states and the height (B) of the Schottky barrier in silicon-nickel structures when a nonuniform deformation is present. We show that the decrease in the barrier height B caused by the deformation is due both to a change in the silicon band gap and to a deformation of the spectrum of the surface electron states.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 6–9, May, 1984.  相似文献   

17.
We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation in two dimensions. To demonstrate these effects, we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime, there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP, the topology of the hole Fermi surface is changed. We also demonstrate that in this regime, the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.  相似文献   

18.
We consider the anisotropic three dimensional XXZ Heisenberg ferromagnet in a cylinder with axis along the 111 direction and boundary conditions that induce ground states describing an interface orthogonal to the cylinder axis. Let L be the linear size of the basis of the cylinder. Because of the breaking of the continuous symmetry around the axis, the Goldstone theorem implies that the spectral gap above such ground states must tend to zero as L→∞. In [3] it was proved that, by perturbing in a sub-cylinder with basis of linear size RL the interface ground state, it is possible to construct excited states whose energy gap shrinks as R -2. Here we prove that, uniformly in the height of the cylinder and in the location of the interface, the energy gap above the interface ground state is bounded from above and below by const.L -2. We prove the result by first mapping the problem into an asymmetric simple exclusion process on ℤ3 and then by adapting to the latter the recursive analysis to estimate from below the spectral gap of the associated Markov generator developed in [7]. Along the way we improve some bounds on the equivalence of ensembles already discussed in [3] and we establish an upper bound on the density of states close to the bottom of the spectrum. Received: 9 August 2001 / Accepted: 29 October 2001  相似文献   

19.
Vertical electrical conduction in Au/(polycrystal-line pentacene)/Al diode structures and the influence of the kinetic energy of incident Au atoms on the conduction property have been comprehensively studied using current–voltage–temperature (IVT) measurements, ultraviolet photoelectron spectroscopy (UPS), atomic-force-microscope (AFM) current imaging, etc. In the IV characteristics, a symmetrical ohmic current component appeared when a low voltage was applied, and a super-linear one appeared when a high positive voltage was applied to Au. The component in the high-forward-voltage region was concluded to be a thermionic emission of holes from Au with a 0.23-eV injection barrier, which is the normal hole conduction through the highest occupied molecular orbital of pentacene. On the other hand, the ohmic component was concluded to be a metal-like electron transport through high-density gap states at grain boundaries which were induced by the Au penetration into pentacene. UPS and IVT measurements clearly indicated the generation of the gap states and the enhancement of their density by the reduction of Au kinetic energy. For vertical-type devices with polycrystalline organic films, the ohmic conduction through the grain boundary will increase the leakage current. On the contrary, it possibly enhances the carrier injection in lateral-type transistors in the case of top-contact configuration.  相似文献   

20.
On the basis of a numerical calculation of the band contributions to the shear moduli, this paper discusses a hypothesis expressed earlier that the premartensitic softening of the lattice in Ni-Al and TiNi alloys is caused by the approach of the latter to an electronic-topological transition (ETT). It is found in both alloys that the ETT effects are substantially different in the different shear moduli: They are strong in the modulus C′ (especially in Ni-Al) and weak in C 44. It can be concluded from this result that the observed premartensitic softening of C′ in Ni-Al and TiNi can actually be caused by the approach to the ETT point. At the same time, the anomalous temperature dependence of C 44 observed in TiNi is apparently not associated with ETT effects. Fiz. Tverd. Tela (St. Petersburg) 39, 972–976 (June 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号