首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling g s , the situation can tentatively be interpreted as classical indication on the black hole—string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of the theory with the S-duality symmetric dilaton function as required by the heterotic string theory. The article is published in the original.  相似文献   

2.
《Nuclear Physics B》1995,456(3):732-752
Following the work of Sen, we consider the correspondence between extremal black holes and string states in the context of the entropy. We obtain and study properties of electrically charged black hole backgrounds of tree level heterotic string theory compactified on a p-dimensional torus, for D = (10 − p) = 4,…,9. We study in particular a one-parameter extremal class of these black holes, the members of which are shown to be supersymmetric. We find that the entropy of such an extremal black hole, when calculated at the stringy stretched horizon, scales in such a way that it can be identified with the entropy of the elementary string state with the corresponding quantum numbers.  相似文献   

3.
We study the near horizon geometry of charged rotating black holes in toroidal compactifications of heterotic string theory. We analyze the extremal vanishing horizon (EVH) limit for these black hole solutions and we will show that the near horizon geometry develops an AdS3 throat. Furthermore, we will show that the near horizon limit of near EVH black holes has a BTZ factor. We also comment on the CFT dual to this near horizon geometry.  相似文献   

4.
We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a Kaluza-Klein black hole in M theory, or a D0-D6 charged black hole in string theory. Since all the microstates of the latter have recently been identified, one can exactly reproduce the entropy of an extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in M theory.  相似文献   

5.
We analyze the effect of higher derivative corrections to the near horizon geometry of the extremal vanishing horizon (EVH) black hole solutions in four dimensions. We restrict ourselves to a Gauss–Bonnet correction with a dilation dependent coupling in an Einstein–Maxwell-dilaton theory. This action may represent the effective action as it arises in tree level heterotic string theory compactified to four dimensions or the K3 compactification of type II string theory. We show that EVH black holes, in this theory, develop an AdS3 throat in their near horizon geometry.  相似文献   

6.
Toward the Kerr/CFT correspondence for the generic non-extremal Kerr black hole, the analysis of scattering amplitudes by near extremal Kerr provides a clue. This pursuit reveals a hidden conformal symmetry in the low frequency wave equation for a scalar field in a certain spacetime region referred to as the near region. For extremal case, the near region is expected to be the near horizon region in which the correspondence via the asymptotic symmetry is studied. We investigate the hidden conformal symmetry in the near horizon limit and consider the relation between the hidden conformal symmetry and the asymptotic symmetry in the near horizon limit. By using an appropriate definition of the quasi-local charge, we obtain the deviation of the entropy from the extremality.  相似文献   

7.
If one attempts to add momentum-carrying waves to a black string then the solution develops a singularity at the horizon; this is a manifestation of the ‘no hair theorem’ for black objects. However individual microstates of a black string do not have a horizon, and so the above theorem does not apply. We construct a perturbation that adds momentum to a family of microstates of the extremal D1–D5 string. This perturbation is analogous to the ‘singleton’ mode localized at the boundary of AdS; to leading order it is pure gauge in the AdS interior of the geometry.  相似文献   

8.
李固强 《中国物理》2005,14(3):468-471
The divergences at all levels for the statistical entropy of a plane symmetry black hole arising from the massless Dirac field are considered using the brick-wall model. It is shown that if we ignore the usual contribution from the vacuum surrounding the system, then the statistical entropy consists of two parts: one is the linearly divergent term which has the geometric character, the other consists of two logarithmically divergent terms which are not proportional to the surface area of the horizon. The entropy of the Dirac field on extremal plane symmetry spacetime background has higher divergence than usual.  相似文献   

9.
Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS2 rather than AdS2.  相似文献   

10.
For the two-charge extremal holes in string theory we show that the Bekenstein entropy obtained from the area of the stretched horizon has a statistical interpretation as a "coarse graining entropy": different microstates give geometries that differ near r = 0, and the stretched horizon cuts off the metric at r = b where these geometries start to differ.  相似文献   

11.
Bekenstein and others propose that the black hole area spectrum is discrete and equally spaced. We implement Kunstatter's method to derive the area spectrum for near extremal black 3-branes. The area spectrum of the event horizon is discrete but not equally spaced.  相似文献   

12.
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical \(\alpha '\) corrections. Classically one has the relation \(\sigma = 4 GS\) between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald’s entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in \(d=4\) and \(d=5\) dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of \(\alpha '\) corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in \(d=5\)). We argue that the relation \(\sigma = 4 GS\) should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.  相似文献   

13.
We study the near horizon geometry of both static and stationary extremal Oliva Tempo Troncoso(OTT)black holes. For each of these cases, a set of consistent asymptotic conditions is introduced. The canonical generator for the static configuration is shown to be regular. For the rotating OTT black hole, the asymptotic symmetry is described by the time reparametrization, the chiral Virasoro and centrally extended u(1) Kac-Moody algebras.  相似文献   

14.
In this paper, we study the CFT duals for extreme black holes in the stretched horizon formalism. We consider the extremal RN, Kerr-Newman-AdS-dS, as well as the higher dimensional Kerr-AdS-dS black holes. In all these cases, we reproduce the well-established CFT duals. Actually we show that for stationary extreme black holes, the stretched horizon formalism always gives rise to the same dual CFT pictures as the ones suggested by ASG of corresponding near horizon geometries. Furthermore, we propose new CFT duals for 4D Kerr-Newman-AdS-dS and higher dimensional Kerr-AdS-dS black holes. We find that every dual CFT is defined with respect to a rotation in certain angular direction, along which the translation defines a U(1) Killing symmetry. In the presence of two sets of U(1) symmetry, the novel CFT duals are generated by the modular group SL(2,Z), and for n sets of U(1) symmetry there are general CFT duals generated by T-duality group SL(n,Z).  相似文献   

15.
赵仁  武月琴  张丽春 《中国物理 B》2009,18(5):1749-1754
<正>By using the entanglement entropy method,this paper calculates the statistical entropy of the Bose and Fermi fields in thin films,and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string.Here,the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string.Taking into account the effect of the generalized uncertainty principle on quantum state density,it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model.These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect.The ultraviolet cut-off in the brick-wall model is not reasonable.The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon.From the viewpoint of quantum statistical mechanics,the correction value of Bekenstein-Hawking entropy is obtained.This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.  相似文献   

16.
In this paper we investigate the scattering of massless Dirac wave from several different black hole spacetimes (i.e. the Schwarzschild black hole, the RN extremal black hole, the Schwarzschild de Sitter black hole, and the extremal Schwarzschild de Sitter black hole) which are influenced by the cosmic string, respectively. All these cases show us that the total absorption cross sections oscillate around the geometric-optical limit and decrease with linear mass density μ of the cosmic string. All of the total scattering cross sections exhibit that the main scattering angle becomes narrower for the high partial frequency wave. Due to the influence of cosmic string, the glory peak becomes wider for larger values of linear mass density μ of the cosmic string.  相似文献   

17.
The destruction of a regular black hole event horizon might provide us the possibility to access regions inside black hole event horizon. This paper investigates the possibility of overcharging a charged Taub-NUT regular black hole via the scattering of a charged field and the absorption of a charged particle. For the charged scalar field scattering, both the near-extremal and extremal charged Taub-NUT regular black holes cannot be overcharged. For the test charged particle absorption, the result shows that the event horizon of the extremal charged Taub-NUT regular black hole still exists while the event horizon of the near-extremal one can be destroyed. However, if the charge and energy cross the event horizon in a continuous path, the near-extremal charged Taub-NUT regular black hole might not be overcharged.  相似文献   

18.
《Nuclear Physics B》1996,475(3):645-676
We show that polarization-dependent string-string scattering provides new evidence for the identification of the Dabholkar-Harvey (DH) string solution with the heterotic string itself. First, we construct excited versions of the DH solution which carry arbitrary left-moving waves yet are annihilated by half the supersymmetries. These solutions correspond in a natural way to Bogomolny-bound-saturating excitations of the ground state of the heterotic string. When the excited string solutions are compactified to four dimensions, they reduce to Sen's family of extremal black hole solutions of the toroidally compactified heterotic string. We then study the large impact parameter scattering of two such string solutions. We develop methods which go beyond the metric on moduli space approximation and allow us to read off the subleading polarization-dependent scattering amplitudes. We find perfect agreement with heterotic string tree amplitude predictions for the scattering of corresponding string states. Taken together, these results clearly identify the string states responsible for Sen's extremal black hole entropy. We end with a brief discussion of implications for the black hole information problem.  相似文献   

19.
We investigate viable scenarios with various axions in the context of supersymmetric field theory and in globally consistent D‐brane models. The Peccei‐Quinn symmetry is associated with an anomalous U(1) symmetry, which acquires mass at the string scale but remains as a perturbative global symmetry at low energies. The origin of the scalar Higgs‐axion potential from F‐, D‐ and soft breaking terms is derived, and two Standard Model examples of global intersecting D6‐brane models in Type II orientifolds are presented, which differ in the realisation of the Higgs sector and in the hidden sector, the latter of which is of particluar importance for the soft supersymmetry breaking terms.  相似文献   

20.
Bekenstein proposed that the spectrum of horizon area of quantized black holes must be discrete and uniformly spaced. We examine this proposal in the context of spherically symmetric charged black holes in a general class of gravity theories. By imposing suitable boundary conditions on the reduced phase space of the theory to incorporate the thermodynamic properties of these black holes and then performing a simplifying canonical transformation, we are able to quantize the system exactly. The resulting spectra of horizon area, as well as that of charge are indeed discrete. Within this quantization scheme, near-extremal black holes (of any mass) turn out to be highly quantum objects, whereas extremal black holes do not appear in the spectrum, a result that is consistent with the postulated third law of black hole thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号