首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for two-component monolayers of two different cerebrosides (LMC-1 and LMC-2) with phospholipids of dipalmitoylphosphatidylcholine (DPPC) and with dipalmitoylphosphatidylethanolamine (DPPE) on a subphase of 0.5 M sodium chloride solution as a function of phospholipid compositions by employing the Langmuir method, the ionizing electrode method, and the fluorescence microscopy. Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort. The contributions of the hydrophilic saccharide group and the head group to the vertical component of the dipole moment (mu( perpendicular)) were estimated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the phospholipid molar fraction (X(phospholipid)), using the additivity rule. From the A-X(phospholipid) and DeltaV(m)-X(phospholipid) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. Judging from the two-dimensional phase diagrams, these can be classified into two types. The first is a positive azeotropic type; the combinations of cerebrosides with DPPC are miscible with each other. The second is a completely immiscible type: the combination of cerebrosides with DPPE. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Delta epsilon) between the cerebrosides and DPPC component. The miscibility of cerebroside and phospholipid components in the monolayer state was also supported by fluorescence microscopy.  相似文献   

2.
Two-component Langmuir monolayers formed on a subphase of 0.5M sodium chloride solution were investigated for two different cerebrosides (LMC-1 and LMC-2) with steroids of cholesterol (Ch) and cholesteryl sodium sulfate (Ch-S); i.e. LMC-1/Ch, LMC-1/Ch-S, LMC-2/Ch, and LMC-2/Ch-S were examined in terms of surface pressure (pi), the surface potential (DeltaV) and the dipole moment (mu( perpendicular)) as a function of surface area (A) by employing the Langmuir method, the ionizing electrode method, and the fluorescence microscopy. Surface potentials (DeltaV) of steroids were analyzed using the three-layer model proposed by Demchak and Fort. The miscibility of cerebrosides and steroids in the insoluble monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the steroid molar fraction (X(steroid)) based upon the additivity rule. From the A-X(steroid) and DeltaV(m)-X(steroid) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the different surface pressures. The PMA and APSP with the mole fraction were discussed for the miscible system. Judging from the two-dimensional phase diagrams, they can be classified into two types. The first is a completely immiscible type; the combination of cerebrosides with cholesterol. The second is a negative azeotropic type, where cerebrosides and cholesteryl sodium sulfate are completely miscible both in the expanded state and in the condensed state. In addition, a regular surface mixture (the Joos equation for the analysis of the collapse pressure of two-component monolayers) allowed calculation of the interaction parameter (xi) and the interaction energy (-Delta epsilon) between the cerebrosides and Ch-S. The miscibility of cerebroside and steroid components in the monolayer state was also supported by fluorescence microscopy.  相似文献   

3.
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for six cerebrosides of LLC-2, LLC-2-1, LLC-2-8, LLC-2-10, LLC-2-12, and LLC-2-15, which were isolated from Linckia laevigata, and two-component monolayers of two different cerebrosides (LLC-2 and LLC-2-8) with phospholipid of dipalmitoylphosphatidylcholine (DPPC) on a subphase of 0.15 M sodium chloride solution as a function of cerebroside compositions in the two-component systems by employing the Wilhelmy method, the ionizing electrode method, and the fluorescence microscopy. The new finding was that LLC-2 showed a stable and liquid expanded type film. Four of them (LLC-2-8, -10, -12, and -15) had the phase transition from the liquid-expanded (LE) to the liquid-condensed (LC) states at 298.2 K. The apparent molar quantity changes (Deltas(gamma), Deltah(gamma), and Deltau(gamma)) on their phase transition on 0.15M at 298.2 K were calculated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the cerebroside molar fraction (X(cerebroside)), using the additivity rule. From the A-X(cerebroside) and DeltaV(m)-X(phospholipid) plots, a partial molecular surface area (PMA) and an apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible systems. Judging from the two-dimensional phase diagrams, these were found to be one type, a positive azeotropic type; all the cerebrosides were miscible with DPPC. Furthermore, assuming a regular surface mixture, the Joos equation for the analysis of the collapse pressure of two-component monolayers allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between the cerebrosides and DPPC. The miscibility of cerebroside and phospholipid components in the monolayer state was also supported by fluorescence microscopy.  相似文献   

4.
Two-component Langmuir monolayers formed on 0.02M Tris buffer solution (pH 7.4) with 0.13M NaCl at 298.2K were investigated for two different fluorinated-hydrogenated hybrid amphiphiles (F6PH5PPhNa and F8PH5PPhNa or F6 and F8, respectively) with DPPC. Surface pressure (pi), surface potential (DeltaV) and dipole moment (mu( perpendicular)) as a function of molecular surface area (A) were measured by employing the Whilhelmy method and an ionizing electrode method. From the A- and DeltaV-X(F6) (or X(F8)) curves, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined as a function of surface mole fraction (X(Fn)) at discrete surface pressures. Then, the behavior of occupied surface areas and surface potentials of the respective components could be made clearer. Compressibility (C(s)), elasticity (C(s)(-1)), and excess Gibbs energy (DeltaG((ex))) as a function of X(F6) (or X(F8)) were estimated at definite pressures. These physico-chemical parameters were found to reflect the mechanical strength of monolayer films formed. The regular solution theory being applied to DeltaG((ex)), the activity coefficients (f) as well as the interaction parameter (I(p)) between DPPC and two hybrid amphiphiles in the binary monolayers were evaluated. I(p) values thus obtained indicated that F8 molecules interact more strongly with DPPC molecules than F6. Moreover, in order to better understand the morphological monolayer state, Langmuir-Blodgett (LB) films made from DPPC and fluorinated-hydrogenated hybrid amphiphiles were examined by atomic force microscopy (AFM). The miscibility of the two components in the monolayer state is evidenced by these thermodynamic quantities and AFM observations. Furthermore, AFM images demonstrated that F8 could more effectively disperse the ordered domains of DPPC than F6.  相似文献   

5.
The membrane properties of the ganglioside GM1 (GM1)/dioleoylphosphatidylcholine (DOPC) binary system and GM1/dipalmitoylphosphatidylcholine (DPPC)/DOPC ternary system were investigated using surface pressure measurements and atomic force microscopy (AFM), and the effect of surface pressure on the properties of the membranes was examined. Mixed GM1/DPPC/DOPC monolayers were deposited on mica using the Langmuir-Blodgett technique for AFM. GM1 and DOPC were immiscible and phase-separated. The AFM image of the GM1/DOPC (1:1) monolayer showed island-like GM1 domains embedded in the DOPC matrix. There was no morphological change on varying surface pressure. The surface pressure-area isotherm of the GM1/DPPC/DOPC (2:9:9) monolayer showed a two-step collapse as in the DPPC/DOPC (1:1) monolayer. The AFM image for the GM1/DPPC/DOPC monolayer showed DPPC and GM1 domains in the DOPC matrix, and the DPPC-rich phase containing GM1 showed a percolation pattern the same as the GM1/DPPC (1:9) monolayer. The percolation pattern in the GM1/DPPC/DOPC monolayer changed as the surface pressure was varied. The surface pressure-responsive change in morphology of GM1 was affected by the surrounding environment, suggesting that the GM1 localized in each organ has a specific role.  相似文献   

6.
7.
The surface states of ganglioside GM1 (GM1)/dipalmitoylphosphatidylcholine (DPPC)/dioleoylphosphatidylcholine (DOPC) monolayers having various compositions were investigated using atomic force microscopy (AFM), and the effect of the composition on the surface states of the membrane was examined. The AFM images for the ternary system showed a DPPC-rich phase containing GM1 in the DOPC matrix, which indicated that the morphology varied as the composition of the monolayers changed. The AFM images for the GM1/DPPC/DOPC monolayers having (2:9:9) and (4:18:9) molar ratios showed a percolation pattern similar to that observed for the GM1/DPPC (1:9) monolayer. The AFM image for the GM1/DPPC/DOPC (2:18:9) monolayer showed a dotted pattern with a high topography. Monolayers having a higher content of DOPC than DPPC and/or having a higher content of GM1 showed dot-like domains in the DPPC-rich phase containing GM1. In conclusion, the surface states of GM1/DPPC/DOPC monolayers changed depending on the composition. These results may be related to a diversity of GM1 in various organs.  相似文献   

8.
The membrane states of the alpha-series ganglioside GM1alpha in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) mixed monolayers and hybrid bilayers were investigated using atomic force microscopy (AFM). The AFM image for the GM1alpha/DOPC/DPPC ternary monolayers showed the formation of GM1alpha-raft in the DOPC matrix. As increase of the surface pressure, GM1alpha are condensed in DPPC-rich domains; long and slender GM1alpha-rafts are separated from the DPPC-rich domains into the DOPC matrix. The GM1alpha/DOPC/DPPC ternary monolayers were deposited on mica coated with the first layer (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine: DPPE) using the Langmuir-Schaeffer technique. The AFM image for the hybrid bilayers showed that same molecules were heterogeneously concentrated according to increase of the surface pressure to form GM1alpha-raft, DPPC-rich domain and DOPC matrix, being in agreement with the observation on the monolayer experiment. The found phenomenon implies that a binding of lectin to GM1alpha causes the increase of the surface pressure, the localization of GM1alpha and the succeeding formation of the raft as a first step of a specific signal transduction.  相似文献   

9.
Betulinic acid (BA, a natural pentacyclic triterpene) can induce mitochondrial membrane damage and trigger the mitochondrial pathway of apoptosis in tumor cells. The monolayer behavior of binary systems of BA and cardiolipin (CL, a unique phospholipid found only in mitochondria membrane in animals) was studied by surface pressure-area (π-A) measurements and analyses and Atomic force microscopy (AFM) observation. The miscibility analysis presents that in mixed monolayers BA takes both tilted and nearly perpendicular orientations at surface pressure below 30 mN/m but only nearly perpendicular orientation at 30 mN/m. The thermodynamic stability analysis indicates that phase separation and repulsion occur in mixed BA/CL monolayers. The compressibility analysis shows that at 30 mN/m, 20% addition of BA does markedly translate the liquid-condensed CL monolayer to mixed BA/CL monolayer with the coexistence of liquid-condensed and liquid-expanded phases. The AFM images of supported monolayers give direct evidence of the conclusions obtained from the analyses of π-A isotherms. These results confirm that at high surface pressure near to real biologic situations, BA orients nearly perpendicularly with hydroxyl group toward water, causes phase separation and changes the permeability of CL film, which correlates with the mitochondrial membrane damage induced by BA.  相似文献   

10.
The interaction between ganglioside GM1 (GM1) and --dipalmitoylphosphatidylcholine (DPPC) in mixed monolayers was investigated using surface pressure measurements and atomic force microscopy (AFM), and the effects of GM1, surface pressure and temperature on the properties of the membranes were examined. Mixed GM1/DPPC monolayers were deposited on mica using the Langmuir–Blodgett (LB) technique for AFM. GM1 and DPPC were miscible below the 0.2 mole fraction of GM1 and there was attractive interaction between GM1 and DPPC. The AFM images for the GM1/DPPC monolayers (XGM1 < 0.2) at 30 mN m−1 and 25 °C indicated a percolation pattern which means a micro phase separation: namely, the mixed film composed of GM1 and DPPC phase-separated from the DPPC liquid-condensed film. The AFM images for the mixed monolayers at 33 mN m−1 indicated a specific morphology when the surface pressure was varied from 30 to 40 mN m−1. The percolation pattern in the AFM image at 25 °C came to be destroyed with increasing temperature and completely disappeared at 45 °C. The change in the morphology of mixed GM1/DPPC monolayers on varying the surface pressure and temperature is thought to be related to signal transduction and a preventive mechanism against viral infections in the human body.  相似文献   

11.
Surface pressure-area, surface potential-area, and dipole moment-area isotherms were obtained for monolayers made from a partially fluorinated surfactant, (perfluorooctyl)undecyldimorpholinophosphate (F8H11DMP), dipalmitoylphosphatidylcholine (DPPC), and their combinations. Monolayers, spread on a 0.15 M NaCl subphase, were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, and fluorescence microscopy. Surface potentials were analyzed using the three-layer model proposed by Demchak and Fort. The contribution of the dimorpholinophosphate polar head group of F8H11DMP to the vertical component of the dipole moment was estimated to be 4.99 D. The linear variation of the phase transition pressure as a function of F8H11DMP molar fraction (X(F8H11DMP)) demonstrated that DPPC and F8H11DMP are miscible in the monolayer. This result was confirmed by deviations from the additivity rule observed when plotting the molecular areas and the surface potentials as a function of X(F8H11DMP) over the whole range of surface pressures investigated. Assuming a regular surface mixture, the Joos equation, which was used for the analysis of the collapse pressure of mixed monolayers, allowed calculation of the interaction parameter (xi=-1.3) and the energy of interaction (Delta epsilon =537 Jmol(-1)) between DPPC and F8H11DMP. The miscibility of DPPC and F8H11DMP within the monolayer was also supported by fluorescence microscopy. Examination of the observed flower-like patterns showed that F8H11DMP favors dissolution of the ordered LC phase domains of DPPC, a feature that may be key to the use of phospholipid preparations as lung surfactants.  相似文献   

12.
The penetration of bovine serum albumin (BSA) into dipalmitoylphosphatidylglycerol (DPPG) monolayers was observed using atomic force microscopy (AFM) and surface pressure measurements. The effects of surface pressure, amount of BSA and the addition of ganglioside GM1 (GM1) were investigated. The surface pressure of the DPPG monolayer was increased by the penetration of BSA, and the increase in surface pressure was greater in the liquid-expanded film than that in the liquid-condensed film. The AFM images indicated that BSA penetrated into the DPPG monolayer. The amount of BSA that penetrated into the DPPG monolayer increased with time and with the amount of BSA added. On the contrary, the AFM image showed that BSA penetration into the mixed DPPG/GM1 (9 : 1) monolayer scarcely occurred. GM1 inhibited the penetration of BSA into the DPPG monolayer.  相似文献   

13.
Surface properties (Langmuir monolayer) of two different cerebrosides which are extracted from the sea cucumber (Bohadschia argus) were investigated. A main difference in chemical structure of cerebroside between BAC-2a and BAC-4 is their head groups (glucose and galactose, respectively). Furthermore, miscibility and interaction between dipalmitoylphosphatidylcholine (DPPC) and cerebrosides (BAC-2a and BAC-4) in the monolayer have been systematically examined. The surface pressure (π)−area (A), the surface potential (ΔV)−A, and the dipole moment (μ)−A isotherms for monolayers of DPPC, cerebrosides, and their binary combinations have been measured using the Wilhelmy method and the ionizing electrode method. BAC-4 forms a stable liquid-expanded (LE) monolayer, whereas BAC-2a has a first-order phase transition from the LE phase to the liquid-condensed (LC) state on 0.15 M NaCl at 298.2 K. The fundamental properties for each cerebroside monolayer were elucidated in terms of the surface dipole moment based on the three-layer model [R.J. Demchak, T. Fort Jr., J. Colloid Interface Sci. 46 (1974) 191–202] for both cerebrosides and the apparent molar quantity change (Δsγ, Δhγ, and Δuγ) for BAC-2a. In addition, their miscibility with DPPC was examined by the variation of the molecular areas and the surface potentials as a function of cerebroside mole fractions, the additivity rule. The miscibility was also confirmed by constructing the two-dimensional phase diagrams. The phase diagrams for the both binary systems were of negative azeotropic type. That is, the two-component DPPC/BAC-2a and DPPC/BAC-4 monolayers are miscible. Furthermore, the Joos equation for the analysis of the collapse pressure of binary monolayers allowed calculation of the interaction parameter and the interaction energy between the DPPC and cerebroside monolayers. The miscibility in the monolayer state was also confirmed by the morphological observation with Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM).  相似文献   

14.
Monolayers of amphiphilic di-block copolymer, PEO40-b-PMA(Az)19 on water surface and solid surfaces, such as silicon wafer and quartz glass, were analyzed by surface pressure — molecular area (π-A) isotherm, UV-Vis spectroscopy, atomic force microscopy (AFM) and total X-ray reflectivity (TXR). The monolayer prepared at 22 mN m-1 consisted of H aggregated azobezene (Az) moieties, which orientated perpendicular to the solid surface. The monolayer structure, including H aggregated Az and orientation of Az, was stable after annealing at 98°C, at which temperature the hydrophilic PEO domain was the liquid phase and the hydrophobic PMA(Az) was in the smectic A phase.  相似文献   

15.
选取哺乳动物生物膜中的重要脂质分子鞘磷脂(SM)作为单分子膜的基本组分, 采用Langmuir-Blodgett(LB)膜技术研究了不同比例的两性霉素B/鞘磷脂单层膜的表面压力-平均分子面积(π-A)曲线以及基于π-A曲线的混合性分析, 同时通过原子力显微镜(AFM)研究了其表面形态的变化. 结果表明, 组分间的摩尔比和表面压力对混合单层膜稳定性、混合性以及分子间相互作用具有重要影响.  相似文献   

16.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.  相似文献   

17.
The ganglioside, GM1, was studied as Langmuir monolayers at the air/water interface with surface pressure-area measurements in addition to Brewster angle microscopy. A characteristic plateau transition, observed on aqueous subphases of pH 2 and 6, 20 degrees C, at the surface pressure of ca. 20 mN/m, was attributed to the reorientation of GM1 polar group upon film compression. This transition was found to disappear at alkaline subphases (pH 10) due to the hydration of fully ionized polar group, hindering its reorientation. The interactions between GM1 and hexadecylphosphocholine (miltefosine) were investigated in mixed monolayers and analyzed with the mean molecular areas, excess areas of mixing and the excess free energy of mixing versus film composition plots. The monolayers stability, quantified by the collapse pressure values, as well as the strength of interaction was found to diminish in the following order: pH 6>pH 2>pH 10. The strongest interaction occurs for mixed films of miltefosine molar fraction, XM=0.7-0.8, especially at low pressure region, and are explained as being due to the surface complex formation of 3:1 or 4:1 (miltefosine:ganglioside) stoichiometry (XM=0.75 or 0.8, respectively).  相似文献   

18.
A novel surfactant containing pentafluorophenyl moiety attached at the terminal position of undecanol (11,11-difluoro-11-(pentafluorophenyl)undecan-1-ol, abbr. PBD) was synthesized and employed for the Langmuir monolayer characterization and miscibility studies with a semifluorinated alkane (perfluorodecyleicosane, abbr. F10H20) and four alcohols differing in the degree of fluorination in their hydrophobic chains: octadecanol (C18OH), perfluorooctyldecanol (F8H10OH), perfluoroisononyldecanol (iF9H10OH) and 1H,1H-perfluorooctadecanol (F18OH). Pure monolayers of all of the investigated surfactants as well as their mixtures were investigated with surface pressure-area isotherms complemented by Brewster angle microscopy (BAM) images. PBD was found to form stable Langmuir monolayers of liquid-expanded character. Characteristic dendritic structures were formed at the very early stage of compression and remained up to the vicinity of collapse, where 3D crystallites appeared. 2D miscibility studies revealed that PBD forms mixed monolayers with the investigated semifluorinated alkane (F10H20) as well as with perfluorinated alcohol (F18OH) within the whole composition range, do not mix with octadecanol to the fully hydrogenated alcohol, whereas it is partially miscible (up to a certain surface pressure value) with the studied semifluorinated alcohols. The analysis of the miscibility derived from the surface pressure-area isotherms (collapse pressure vs composition dependencies) agrees well with BAM images. Molecular interactions in the investigated systems have been quantified with interaction parameter, alpha.  相似文献   

19.
The kinetics of formation of inclusion complexes between beta-cyclodextrin and monolayers of one-, two- and three-chained lipid molecules, namely, oleic acid (OA), monoolein (MO), diolein (DO) and triolein (TO), was investigated at various pH using three independent dynamic methods. The formation and solubilization of soluble inclusion beta-CD/OA and beta-CD/MO complexes was detected by measuring the decrease of the surface area and surface pressure of the OA and MO monolayers in the presence of beta-CD within a wide range of concentrations. A third approach, describing the dilatational properties of the monolayers, influenced by the formation and solubilization of the complexes, was developed. Using the three above-mentioned independent methods, the rate constants of formation (k1) and dissociation (k2) of beta-CD/OA and beta-CD/MO, were determined. We observed that solubilization flux i s for OA monolayer increases with pH and at pH 11 reached a value, which is closed to the diffusion flux iD and the process thus becomes diffusion controlled. For MO monolayer no significant effects of pH was observed above pH 6. The surface pressure (Deltapi)--area per molecule (A) and surface potential (DeltaV)--area per molecule (A) isotherms and rheological properties of DO and TO monolayers were measured in the presence or absence of beta-CD. DO and TO form water-insoluble complexes with beta-CD, as visualized by AFM images.  相似文献   

20.
6-N-[2-(Tetradecyl)hexadecanamido]hexyl beta-D-glucopyranosyluronic acid-(1-->6)-beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and its clustering compound (2) carrying a tetravalent sugar unit, which are new model compounds related to a major antigenic epitope from antiulcer pectic polysaccharide of Bupleurum falcatum L., were synthesized and the distributions of 1 and 2 in mixed ganglioside (GM1, GD1a or GT1b)/phospholipid (DPPC) monolayers were observed using atomic force microscopy (AFM). AFM images showed that 1 was distributed in the GM1, GD1a and GT1b region of the mixed monolayers, in which 1 was miscible with GD1a. Specific distribution of 1 was observed in the mixed GM1/DPPC monolayer. Compound 2 was miscible with GM1, while 2 formed associations with GD1a and GT1b in the mixed monolayers. The distribution mode of 1 and 2 was different among the mixed ganglioside/DPPC monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号