首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a universal, highly efficient and sensitive method for the characterization of quantum dot (QD) bioconjugates based on capillary electrophoresis with laser-induced fluorescent (LIF) detection. We first prepared CdTe QDs in aqueous phase by a chemical route with mercaptopropionic acid as a ligand, and then were coupled to certain proteins using bifunctional linkage reagent or electrostatic attraction. The QD bioconjugates were characterized by capillary electrophoresis with LIF detection. We found that QD bioconjugates were efficiently separated with free QDs by the optimization of buffer pH. Furthermore, we found that ultrafiltration was an effective and simple approach to purify QD conjugates with bovine serum albumin (BSA). Due to their broad absorption spectra and size dependent emission wavelength tunability, QDs can be excited to emit different colour fluorescence using a single wavelength laser source, and therefore, we believe that CE with LIF detection will become a universal and efficient tool for the characterization of QD bioconjugates.  相似文献   

2.
Near-infrared gold-doped CdHgTe quantum dots (QDs) with improved photoluminescence and biocompatibility were developed using an aqueous solution route with l-glutathione and l-cysteine as stabilizers. As-prepared Au:CdHgTe QDs were covalently linked to arginine–glycine–aspartic acid (RGD) peptide, anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), and anti- carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) MAb separately. Three Au:CdHgTe QD bioconjugates (QD800-RGD, QD820-anti-CEACAM1, and QD840-anti-EGFR) were successfully used as probes for in vivo tumor-targeted multispectral fluorescence imaging of xenografts. Fluorescence signals from the QD bioconjugates used to detect three tumor markers were spectrally unmixed, and their co-localization was analyzed. The results indicate that multiple tumor markers could be simultaneously detected by multispectral fluorescence imaging in vivo using QD bioconjugates as probes. This approach has excellent potential as an imaging method for the noninvasive exploration and detection of multiple tumor markers in vivo, thereby substantially aiding the diagnosis of cancer.  相似文献   

3.
Newly prepared CdTe quantum dots ( QD) bearing shells of water solubility providing capping agents (i.e., thioglycolic acid ( TGA) and 2-(dimethylamino)ethanethiol hydrochloride (DMAET) were subjected to electrostatic assays with several proteins (i.e., cytochrome c (cyt c) and human serum albumin (HSA). In particular, we employed absorption, emission, transient absorption and time-resolved emission spectroscopic means to test their response to light. Only for negatively capped QDs spectroscopic and kinetic evidence were gathered that corroborate the successful bioconjugation of QDs with cyt c to yield QD- cyt c bioconjugates. In fact, photoexcitation of QD-cyt c leads to a fast deactivation of the QD band gap emission and of the QD excited state. Notably, these interactions depend on the size of the QDs. Repulsive forces, on the other hand, are operative between the positively capped QDs and cyt c, hampering any bioconjugation.  相似文献   

4.
A novel strategy for “signal on” and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the “signal on” detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.  相似文献   

5.
The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in F?rster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD-A647 donor-acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.  相似文献   

6.
The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.  相似文献   

7.
Immobilization of quantum dots (QDs) onto solid supports could improve their applicability in the development of sensing platforms and solid‐phase reactors by allowing the implementation of reusable surfaces and the execution of repetitive procedures. As the reactivity of QDs relies mostly on their surface chemistry, immobilization could also limit the disruption of solution stability that could prevent stable measurements. Herein, distinct strategies to immobilize QDs onto porous aminated supports, such as physical adsorption and the establishment of chemical linking, were evaluated. This work explores the influence of QD capping and size, concentration, pH, and contact time between the support and the QDs. Maximum QD retention was obtained for physical adsorption assays. Freundlich and Langmuir isotherms were used to analyze the equilibrium data. Gibbs free energy, enthalpy, and entropy were calculated and the stability of immobilized QDs was confirmed.  相似文献   

8.
Luminescent semiconductor quantum dots (QDs) have great potential for use in biological assays and imaging. These nanocrystals are capped with surface ligands (bifunctional molecules, amphiphilic polymers, phospholipids, etc.) that render them hydrophilic and provide them with functional properties. These coatings alters their hydrodynamic radii and surface charge, which can drastically affect properties such as diffusion within the cell cytoplasm. Heavy atom techniques such as transmission electron microscopy and X-ray scattering probe the inorganic core and do not take into account the ligand coating. Herein we use dynamic light scattering to characterize the hydrodynamic radius (R(H)) of CdSe-ZnS QDs capped with various hydrophilic surface coatings (including dihydrolipoic acid and amphiphilic polymers) and self-assembled QD-protein bioconjugates. Experiments were complemented with measurements of the geometric size and zeta potential using agarose gel electrophoresis and laser Doppler velocimetry. We find that the effects of surface ligands on the hydrodynamic radius and on the nanoparticle mobility are complex and strongly depend on a combination of the inorganic core size and nature and lateral extension of the hydrophilic surface coating. These properties are critical for the design of QD-based biosensing assays as well as QD bioconjugate diffusion in live cells.  相似文献   

9.
We report a simple and versatile approach for the conjugation of luminescent CdSe-ZnS core-shell quantum dots (QDs) to proteins through coordination of engineered C-terminal oligohistidine sequences. Several histidine tail containing proteins were self-assembled onto the QD surface using this method. A recombinant antibody specific for the high explosive 2,4,6-trinitrotoluene (TNT) was conjugated to QDs through a carboxy terminal histidine tail and the bioconjugate used to detect TNT by competitive immunoassay. TNT was detected over the range of 10 μg/ml down to 41 ng/ml using the scFv conjugated to QDs. These results open up the possibility to conjugate luminescent QDs to a whole range of proteins to form QD bioconjugates that can be effectively used in bio-oriented applications, such as sensing, imaging, immunoassay and other diagnostics.  相似文献   

10.
The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne–azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy‐filtered transmission electron microscopy (EF‐TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic‐core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper‐induced PL quenching can be interesting for the design of sensitive cation sensors, copper‐free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates.  相似文献   

11.
A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.  相似文献   

12.
The paper describes the development of highly sensitive particle-based fluorescence resonance energy transfer (FRET) probes that do not use molecular fluorophores as donors and acceptors. In these probes, CdSe/ZnS luminescent quantum dots (QDs) were capped with multiple histidine-containing peptides to increase their aqueous solubility while maintaining their high emission quantum yield and spectral properties. The peptide-modified QDs (QD-His) were covalently attached to carboxyl-modified polystyrene (PS) microspheres to form highly emitting PS microspheres (QD-PS). Gold nanoparticles (AuNPs) were then covalently attached to the QD-PS surface to form AuNP-QD-PS composite microspheres that were used as FRET probes. Attachment of AuNPs to QD-PS completely quenched the QD emission through FRET interactions. The emission of QD-PS was restored when the AuNPs were removed from the surface by thiol ligand displacement. The new AuNP-QD-PS FRET platform is simple to prepare and highly stable, and it opens many new possibilities for carrying out FRET assays on microparticle-based platforms and in microarrays. The versatility of these assays could be greatly increased by replacing the linkers between the QDs and AuNPs with ones that selectively respond to specific cleaving agents or enzymes.  相似文献   

13.
Nanostructures of colloidal CdSe/ZnS core/shell quantum dots (QDs) surrounded by a discrete number of Au nanoparticles were generated via DNA hybridization and purified by gel electrophoresis. Statistics from TEM analysis showed a high yield of designed structures. The distance between Au particles and QD, the number of Au around the central QD, and the size of Au and QD can be adjusted. Rationally designed structures such as these hold great promise for researching the physical interactions between semiconductor and Au nanoparticles and for developing more efficient nanoprobes.  相似文献   

14.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   

15.
We assessed the ability of luminescent quantum dots (QDs) to function as energy acceptors in fluorescence resonance energy transfer (FRET) assays, with organic dyes serving as donors. Either AlexaFluor 488 or Cy3 dye was attached to maltose binding protein (MBP) and used with various QD acceptors. Steady-state and time-resolved fluorescence measurements showed no apparent FRET from dye to QD. We attribute these observations to the dominance of a fast radiative decay rate of the donor excitation relative to a slow FRET decay rate. This is due to the long exciton lifetime of the acceptor compared to that of the dye, combined with substantial QD direct excitation.  相似文献   

16.
Chiral quantum dots (QDs), differing in their core or shell size and, consequently, in their optical properties, were synthesized by the treatment of commercially available amine‐capped quantum dots with methyl ester N‐acetyl‐L ‐cysteine (CysP). Interestingly, their colloidal methanol solutions remain stable for several months. Their NMR and IR spectra were in accordance with CysP binding to the QD surface through two anchoring groups; its thiolate (strongly bound) and the carbonyl group of its ester (weaker bound) group, whereas their circular dichroism (CD) spectra showed a new broad redshifted band, suggesting that the attachment to the QD surface modified the conformational equilibrium towards conformer(s) with optical activity in this region. These QDs were sufficiently fluorescent to perform studies of the chiral recognition of drugs, in particular the aryl propionic acids (APAs) ketoprofen (KP), naproxen (NP), flurbiprofen (FP), and ibuprofen (IP). We used different drug concentration ranges, depending on the QD solubility. All the assayed drugs quenched the QD emission in a concentration‐dependent mode. Quenching fluorescence assays with the chiral QDs (CS@CysP) showed their extraordinary capacity for the chiral recognition of KP, NP, and FP, and particularly in the case of KP and FP, a remarkable positive allosteric effect was detected for the R enantiomer. By using a drug/CS@CysP molar ratio of 5000:1 and 2500:1, the changes of intensity and the sign of the CD spectrum of the drug evidenced the dissociation of the drug carboxylic group in the presence of the QD.  相似文献   

17.
We used luminescent CdSe-ZnS core-shell quantum dots (QDs) as energy donors in fluorescent resonance energy transfer (FRET) assays. Engineered maltose binding protein (MBP) appended with an oligohistidine tail and labeled with an acceptor dye (Cy3) was immobilized on the nanocrystals via a noncovalent self-assembly scheme. This configuration allowed accurate control of the donor-acceptor separation distance to a range smaller than 100 A and provided a good model system to explore FRET phenomena in QD-protein-dye conjugates. This QD-MBP conjugate presents two advantages: (1) it permits one to tune the degree of spectral overlap between donor and acceptor and (2) provides a unique configuration where a single donor can interact with several acceptors simultaneously. The FRET signal was measured for these complexes as a function of both degree of spectral overlap and fraction of dye-labeled proteins in the QD conjugate. Data showed that substantial acceptor signals were measured upon conjugate formation, indicating efficient nonradiative exciton transfer between QD donors and dye-labeled protein acceptors. FRET efficiency can be controlled either by tuning the QD photoemission or by adjusting the number of dye-labeled proteins immobilized on the QD center. Results showed a clear dependence of the efficiency on the spectral overlap between the QD donor and dye acceptor. Apparent donor-acceptor distances were determined from efficiency measurements and corresponding F?rster distances, and these results agreed with QD bioconjugate dimensions extracted from structural data and core size variations among QD populations.  相似文献   

18.
The preparation of highly water‐soluble and strongly fluorescent diketopyrrolopyrrole (DPP) dyes using an unusual taurine‐like sulfonated linker has been achieved. Exchanging a phenyl for a thienyl substituent shifts the emission wavelength to near λ=600 nm. The free carboxylic acid group present in these new derivatives was readily activated and the dyes were subsequently covalently linked to a model protein (bovine serum albumin; BSA). The bioconjugates were characterized by electronic absorption, fluorescence spectroscopy and MALDI‐TOF mass spectrometry, thus enabling precise determination of the labeling density (ratio DPP/BSA about 3 to 8). Outstanding values of fluorescence quantum yield (30 % to 59 %) for these bioconjugates are obtained. The photostability of these DPP dyes is considerably greater than that of fluorescein under the same irradiation conditions. Remarkably low detection limits between 80 and 300 molecules/μm2 were found for the BSA bioconjugates by fluorescence imaging with a epifluorescence microscope.  相似文献   

19.
A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications.  相似文献   

20.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号