首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the room temperature synthesis of zinc selenide (ZnSe) nano crystalline thin film on quartz by using a relatively simple and low cost closed space sublimation process (CSSP). The compatibility of the prepared thin films for optoelectronic applications was assessed by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), Raman spectroscopy, photoluminescence, and Fourier transform infrared spectroscopy (FT-IR). The XRD confirmed that the films were polycrystalline with the preferential orientation along the (111) plane corresponding to the cubic phase (2θ = 27.28 ). The AFM indicated that the ZnSe film presented a smooth and compact morphology with RMS roughness 19.86 nm. The longitudinal optical phonon modes were observed at 247 cm 1 and 490 cm 1 attributed to the cubic structured ZnSe. The Zn-Se stretching band was confirmed by the FT-IR. The microstructure and compositional analysis was made with the SEM. The grain size, dislocation density, and strain calculated were co-related. All these properties manifested a good quality, high stability, finely adhesive, and closely packed structured ZnSe thin film for optoelectronic applications.  相似文献   

2.
The cuprous oxide (Cu2O) thin films were electrodeposited with different reaction temperatures. The structural, morphological, optical, photoluminescence and photo response properties of the deposited films were analyzed. XRD analysis reveals cubic crystal structure for the deposited films with polycrystalline nature. The film deposited at room temperature possess high crystallite size of 37 nm. The surface morphology shows that by increasing the deposition temperature pyramid shaped morphology changes. Laser Raman study confirms the peaks 109, 148, 219, 415 and 635 cm?1 conforms the Cu2O phase formation. The band gap of the films are 2.02, 2.10 and 2.27 eV for the RT, 40 and 50 °C, respectively. The photoluminescence spectral analysis contains an emission peak at 618 nm confirm the formation of Cu2O. The photo response study confirms the ohmic nature of the films. The film electrodeposited at room temperature showed good I–V curve at the illumination of 300 W cm?2.  相似文献   

3.
The lowest energy gap Eg of AgGaS2 in the temperature range from 4.2 to 300° K was determined from the reflectivity, photoluminescence and absorption measurements. Below ~ 80° K the temperature coefficient of the energy gap is +6 × 10-5eVK. Above ~80° K the sign of the coefficient reverses and the value is -1.8 × 10-4eVK. The positive value is explained with the lattice dilation effect being the dominant mechanism for the energy gap variation at lower temperatures than ~80°K.  相似文献   

4.
We have grown Cr doped ZnSe thin films by pulsed laser deposition on GaAs, sapphire and Si substrates through KrF excimer laser ablation of hot-pressed targets containing appropriate stoichiometric mixtures of Zn, Se, and Cr species and hot-pressed ceramic targets made of ZnSe and CrSe powders in vacuum and in an He background environment (10-4 Torr). Deposited films were analyzed using X-ray diffraction to determine crystallinity and energy dispersive X-ray fluorescence to confirm Cr incorporation into the films. Photoluminescence measurements on the films show intracenter Cr2+ emission in the technologically important 2–2.6 μm spectral range. PACS 78.66.hf; 78.66.-w; 78.55.-m; 78.66.Bz; 78.20.-e  相似文献   

5.
ZnSe films were pulse-electrodeposited on conducting glass substrates with and without the addition of phosphotungstic acid. X-ray diffraction studies indicated the formation of single phase cubic ZnSe. Addition of phosphotungstic acid resulted in films with nanocrystallites. The band gap of the films was found to increase due to addition of phosphotungstic acid. The films had a crystallite size of the order of 15nm and a surface roughness of 1.8nm. Laser Raman studies exhibited the LO phonon peaks of ZnSe. The films were found to possess a slight excess of Se as evident from the energy dispersive X-ray analysis measurements.  相似文献   

6.
InN films with electron concentration ranging from n~1017 to 1020 cm?3 grown by metal–organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated by variable-temperature photoluminescence and absorption measurements. The energy positions of absorption edge as well as photoluminescence peak of these InN samples with electron concentration above 1018 cm?3 show a distinct S-shape temperature dependence. With a model of potential fluctuations caused by electron-impurity interactions, the behavior can be quantitatively explained in terms of exciton freeze-out in local potential minima at sufficiently low temperatures, followed by thermal redistribution of the localized excitons when the band gap shrinks with increasing temperature. The exciton localization energy σ loc is found to follow the n 5/12 power relation, which testifies to the observed strong localization effects in InN with high electron concentrations.  相似文献   

7.
ZnSe films were deposited by pulsed laser ablation on a crystalline GaAs substrate and on an amorphous quartz substrate. The deposition process was performed with the same growth parameters. The films were investigated by means of X-ray diffraction, reflectance and photoluminescence spectroscopy. The X-ray diffraction spectra have demonstrated that the films grow in a highly oriented way but having different orientations, i.e. the films deposited on GaAs grow (100)-oriented and the films deposited on quartz grow (111)-oriented. Reflectance spectra as a function of the temperature have been analysed by means of the classical oscillator model, in order to obtain the temperature dependence of the band gap energy. This gives results comparable to those of ZnSe single crystals for ZnSe on GaAs, but it is red-shifted for ZnSe on quartz, because of lattice and thermal strains. The photoluminescence measurements at T = 10 K confirm the better quality of ZnSe deposited on GaAs and show that pulsed laser ablation is a promising technique to grow films having intrinsic luminescence even on an amorphous substrate. Received 29 May 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: giuseppe.perna@ba.infn.it  相似文献   

8.
Wide bandgap semiconductors such as ZnSe and ZnO have attracted great interest due to their applications in solar cells, light emitting diodes, and lasers. However, these wide bandgap semiconductors are frequently difficult to be doped to heavy concentrations, greatly limiting their application. A substrate holder with a natural temperature gradient was developed for batch growth of films at different deposition temperatures, in order to investigate ZnSe film growth and doping challenges. Thin ZnSe films were grown by pulsed laser deposition and characterized using X-ray diffraction, optical transmission and reflection, Raman spectroscopy, and Energy Dispersive X-ray analysis. Deposition temperature and film stoichiometry (Zn:Se) are shown to be significant factors affecting ZnSe growth and doping. ZnSe films with improved crystallinity have been obtained by enriching with selenium and depositing at an optimized temperature. Heavily p-type ZnSe films with hole concentrations of ~2.7 × 1019 cm?3 and resistivities of ~0.099 Ohm cm have been obtained (compared with previous reports of ~1 × 1018 cm?3 and ~0.75 Ohm cm). The results, which are consistent with previous theoretical prediction of compensating defects in ZnSe films, can help to optimize ZnSe growth conditions and understand doping challenges in wide bandgap semiconductors.  相似文献   

9.
ZnSe thin films have been deposited on high cleaned glass substrate by spray pyrolysis technique within the glass substrate temperature range (400 C to 450 C). The structural properties of ZnSe thin films have been investigated by (XRD) X-ray diffraction techniques. The X-ray diffraction spectra showed that ZnSe thin films are polycrystalline and have a cubic (zinc blende) structure. The most preferential orientation is along the (111) direction for all spray deposited ZnSe films together with orientations in the (220) and (311) planes also being abundant. The film thickness was determined by an interferometric method. The lattice parameter, grain size, microstrain and dislocation densities were calculated and correlated with the substrate temperature (TS). The optical properties of ZnSe thin films have been investigated by UV/VIS spectrometer and the direct band gap values were found to be in the region of 2.65 eV to 2.70 eV. The electrical properties of ZnSe thin films have been investigated using the Van der Pauw method and the high quality ZnSe thin films were observed to develop at 430 C with a resistivity of 56,4×105 ohm cm, a conductivity of 1.77×10-7 (Ω cm)-1 and a hall mobility of 0.53 cm2/Vsec.  相似文献   

10.
Areas of single-layer MoS2 film can be prepared in a tube furnace without the need for temperature control. The films were characterized by means of Raman spectroscopy, photoluminescence, low-energy electron diffraction and microscopy, and X-ray photoelectron spectroscopy and mapping. Transport measurements show n-doped material with a mobility of 0.26 cm2 V-1 s-1.  相似文献   

11.
We report on the results of optical absorption and Raman spectroscopy measurements on InSbBi layers grown by liquid phase technique. A maximum Bi content of 0.4 at.%, as measured by energy dispersive X-ray (EDX) technique, is used in the experiments. Optical absorption measurements made on the samples indicate a room temperature energy band gap reduction up to about 6 meV with respect to undoped InSb layers grown by the same technique. Bi content calculated from this band gap reduction agrees with that obtained from EDX. A weak peak obtained at 152 cm?1 in the Raman spectrum of the material is identified with the longitudinal optical phonon mode of InBi. Further a mode at 140 cm?1 is observed due to isolated Bi atoms at the interstitial sites.  相似文献   

12.
磷掺杂纳米硅薄膜的研制   总被引:8,自引:0,他引:8       下载免费PDF全文
用PECVD薄膜沉积方法,成功地制备了磷掺杂纳米硅(nc-Si:H(P))薄膜.用扫描隧道电镜(STM)、Raman散射、傅里叶变换红外吸收(FTIR)谱、电子自旋共振(ESR)、共振核反应(RNR)技术对掺磷纳米硅进行了结构分析,确认了样品的微结构为纳米相结构.掺磷后膜中纳米晶粒的平均尺寸d减小,一般在25—45nm之间,且排列更加有序.掺磷nc-Si:H膜具有较高的光吸收系数,光学带隙在173—178eV之间,和本征nc-Si:H相同.掺杂nc-Si:H薄膜电导率在10-1关键词:  相似文献   

13.
Ag掺杂p型ZnO薄膜及其光电性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用超声喷雾热分解法在石英衬底上以醋酸锌水溶液为前驱体,以硝酸银水溶液为Ag掺杂源生长了Ag掺杂ZnO(ZnO:Ag)薄膜.研究了衬底温度对所得ZnO:Ag薄膜的晶体结构、电学和光学性质的影响规律.所得ZnO:Ag薄膜结构良好,在室温光致发光谱中检测到很强的近带边紫外发光峰,透射光谱中观测到非常陡峭的紫外吸收截止边和较高的可见光区透过率,表明薄膜具有较高的晶体质量与较好的光学特性.霍尔效应测试表明,在500℃下获得了p型导电的ZnO:Ag薄膜,载流子浓度为5.30×1015cm关键词: ZnO:Ag薄膜 p型掺杂 超声喷雾热分解 霍尔效应  相似文献   

14.
ZnSe thin films have been prepared by inert gas condensation method at different gas pressures. The influence of deposition pressure, on structural, optical and electrical properties of polycrystalline ZnSe films have been investigated using X-ray diffraction (XRD), optical transmission and conductivity measurements. The X-ray diffraction study reveals the sphalerite cubic structure of the ZnSe films oriented along the (1 1 1) direction. The structural parameters such as particle size [6.65-22.24 nm], strain [4.01-46.6×10−3 lin−2 m−4] and dislocation density [4.762-18.57×1015 lin m−2] have been evaluated. Optical transmittance measurements indicate the existence of direct allowed optical transition with a corresponding energy gap in the range 2.60-3.00 eV. The dark conductivity (σd) and photoconductivity (σph) measurements, in the temperature range 253-358 K, indicate that the conduction in these materials is through an activated process having two activation energies. σd and σph values decrease with the decrease in the crystallite size. The values of carrier life time have been calculated and are found to decrease with the reduction in the particle size. The conduction mechanism in present samples has been explained, and the density of surface states [9.84-21.4×1013 cm−2] and impurity concentration [4.66-31.80×1019 cm−3] have also been calculated.  相似文献   

15.
Nanocrystal ZnSe material was prepared in a triethylamine solvent using the modified solvothermal method in which potassium borohydride, a reducing reagent, is employed. Compared with the bulk ZnSe, the steady absorption edge and photoluminescence peak of nanocrystal ZnSe shift toward high energy. With the decrease of nanoparticle size, the probability of inelastic collision between electron and nanoparticle surface increases, which results in the enhancement of the intensity of electron–phonon coupling and the decrease of electron–phonon scattering time. In the lower temperature range (13–100 K), the transition probability between singlet state and triple state rapidly increases with the increase in temperature. With the further increase in temperature (100–292 K), the radiative recombination between singlet state and ground state is dominant. The competitive non-radiative recombination between singlet state and triple state is suppressed, therefore, the radiation decay time of singlet state changes slightly. PACS 78.55.Et; 73.61.Tm; 78.47.+p; 78.90.+t  相似文献   

16.
ZnSe thin films were deposited onto Corning glass and silicon substrates using thermal evaporation. The samples were prepared at different substrate temperatures. The thin films’ surface chemical composition was determined through Auger electron spectroscopy (AES). AES signals corresponding to Zn and Se were only detected in AES spectra. The samples’ crystallographic structure was studied through X-ray diffraction. The material crystallised in the cubic structure with preferential orientation (111). Optical properties of the ZnSe films were studied over two energy ranges via electron energy loss spectroscopy (10–90 eV) and spectral transmittance measurements (0.4–4 eV). In both cases, the spectral variation of the refractive index and the absorption coefficient were determined by fitting the experimental results with well-established theoretical models. Experimental values for the material’s gap were also found, and photoconductivity (PC) measurements were carried out. Transitions between bands, usually labelled ΓV8 → ΓC6 and ΓV7 → ΓC6, were found in the optical and PC responses. A wide spectral photoconductive response between 300 and 850 nm was found in the ZnSe/Si samples prepared at 250 °C substrate temperature.  相似文献   

17.
ZnSe films were grown by chemical vapour deposition on GaAs substrates. The influence of the source temperature (between 820 and 900° C) and the substrate temperature (between 620 and 790° C) on the film properties were investigated by Hall measurements, X-ray diffraction, and photoluminescence. With respect to blue luminescent devices the ratio of excitonic to deep level transitions was found to be optimum at low growth rates when the source temperatures were kept below 840° C. P-type conduction up to a net carrier concentration of 8×1018 cm–3 could be obtained by substrate temperatures above 700° C. Lattice contraction versus substrate temperature pointed to a reduced incorporation of donors at higher growth temperatures.  相似文献   

18.
We report measurements of the far-infrared reflectivity of polycrystalline samples of YBa2Cu3O7-δ which have their superconducting transition temperatures in the 90 K range. The measurements performed between 300 K and 10 K reveal temperature-dependent structures attributed to optical phonons in the 150 cm-1 – 350 cm-1 range, and excitation of the electrons across the energy gap. Complicated structures make unambiguous fitting with the Mattis-Bardeen theory difficult, but it seems that the energy gap is around 3.5 kTc for T⪡Tc. Additionally, our results indicate the possibility of a second gap at an energy corresponding to 5.4 kTc.  相似文献   

19.
利用真空蒸发法在石英玻璃衬底上制备了ZnS薄膜,将能量80 keV,剂量1×1017 cm-2的Ti离子注入到薄膜中,并将注入后的ZnS薄膜进行退火处理,退火温度500—700 ℃.利用X射线衍射(XRD)研究了薄膜结构的变化,利用光致发光(PL)和光吸收研究了薄膜光学性质的变化.XRD结果显示,衍射峰在500 ℃退火1 h后有一定程度的恢复;光吸收结果显示,离子注入后光吸收增强,随着退火温度的上升,光吸收逐渐降低,吸收边随着退火温度的提高发生蓝移;PL显示,薄 关键词: ZnS薄膜 离子注入 X射线衍射 光致发光  相似文献   

20.
High-quality ZnO film growth on sapphire was achieved by pulsed laser deposition using a high temperature deposited ZnO buffer layer. This high temperature deposited buffer layer remarkably improves crystallinity of subsequent films. In particular, the full width at half-maximum of X-ray diffraction ω-rocking curves for ZnO films grown with the buffer layer is 0.0076° (27.36 arcsec) and 0.1242° (447.12 arcsec) for the out-of-plane (002) and in-plane (102) reflections, respectively. In addition, ZnO films grown with this buffer layer showed a carrier mobility of 88 cm2/V s, which is three times higher than that realized for ZnO films grown without the buffer layer. The room temperature photoluminescence spectra showed strong band edge emission with little or no defect-related visible emission. PACS 78.55.Et; 81.05.Dz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号