首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
通过后重氮偶合的方法合成了一种含支化侧链偶氮苯生色团的聚电解质 (PBANT AC) .用IR、NMR、DSC、UV和元素分析等手段对聚合物的结构和性能进行了表征 .研究发现 ,在不同比例的水和四氢呋喃混合溶剂中PBANT AC的紫外 可见光光谱有很大的差别 .这种差别反映了PBANT AC分子中的偶氮苯生色团的不同聚集状态 .通过静电吸附逐层自组装的方法将PBANT AC分子组装成多层膜 .在 488nm的偏振Ar+ 激光的照射下 ,聚合物薄膜中的偶氮苯生色团可发生光致取向 ,取向有序度约 0 0 5 .偶氮苯生色团的顺反异构化反应使H 聚集体在光照后发生解聚集  相似文献   

2.
The isomerization behaviors of 2-(phenylazo)imidazole (Pai-H) and 1-N-methyl-2-(phenylazo)imidazole (Pai-Me) have been investigated. The crystal structure of trans-Pai-Me was determined, revealing that key structures around the azo group are nearly identical among azobenzene, Pai-H, and Pai-Me. Pai-Me undergoes reversible cis/trans photoisomerization, whereas Pai-H responds poorly to irradiation. The quantum yields of trans-to-cis isomerization of Pai-Me on 454 and 355 nm excitation are 0.35 +/- 0.03 and 0.25 +/- 0.03, respectively, in toluene. The wavelength-dependent isomerization quantum yield is well-known for azobenzene, but these values are substantially higher than those of azobenzene. The activation energy of thermal cis-to-trans isomerization of Pai-Me in toluene is 79.0 +/- 3.5 kJ mol(-1), which is lower than that of azobenzene by 15 kJ mol(-1). The thermal cis-to-trans isomerization of Pai-H is even faster. Density functional theory calculations were performed, revealing that the energy gaps between the azo n-orbital and the highest pi-orbital of azoimidazoles are much narrower than that of azobenzene. Finally, a preliminary study suggested that metal ions can modulate the absorption spectrum of Pai-Me without a loss of the gross photochromic behavior.  相似文献   

3.
Photoisomerization and thermal isomerization behaviors of an extensive series of arylazoimidazoles are investigated. Absorption spectra are characterized by a structured pipi* absorption band around 330-400 nm with a tail on the lower energy side extending to 500 nm corresponding to an npi* transition. The trans-to-cis photoisomerization occurs on excitation into these absorption bands. The quantum yields are dependent on the excitation wavelength, as observed for azobenzene derivatives, but are generally larger than those of azobenzene. The thermal cis-to-trans isomerization rates are also generally larger than that of azobenzene and are comparable to those of 4-N,N-dimethylaminoazobenzene and 4-nitroazobenzene. Arylazoimidazoles with no substituent on the imidazole nitrogen are unique in that the quantum yield for the trans-to-cis photoisomerization and the rate of thermal cis-to-trans isomerization are particularly large. It is proposed that the fast thermal isomerization is due to an involvement of self-catalyzed and protic molecule-assisted tautomerization to a hydrazone form.  相似文献   

4.
Binary organogels were prepared from coaggregates of azobenzene-tethered melamine dimer and cyanurate/barbiturates. In the gels of hydrocarbon liquids, the coaggregates formed heavily entangled nanofibers, morphologies of which are dramatically different from the previously reported coaggregates based on flexible dodecamethylene-tethered melamine dimers. In the present systems, the rigidity of the azobenzene tether may induce regular packing of molecules. In addition, UV-vis and IR spectroscopic measurements provided unequivocal evidence for the contribution of the central amide groups and the azobenzene chromophores in the tether moiety upon forming well-defined nanofibers by hydrogen-bonding and face-to-face (H-type) pi-pi stacking interactions, respectively. As a result of tight molecular packing in the self-assembled nanofibers, the azobenzene moiety in the gel state showed remarkable resistance to trans --> cis isomerization upon irradiation with UV light.  相似文献   

5.
In previous reports, we presented the synthesis and properties of double-tailed azobenzene-substituted phosphate amphiphiles (Kuiper et al. Synthesis 2003, 695 and Kuiper et al. Langmuir 2004, 20, 1152). We also reported that an ion channel can be regulated by trans-cis isomerization of these amphiphiles, which were incorporated in the membrane (Folgering et al. Langmuir 2004, 20, 6985). In the present study, the effect of trans-cis isomerization of both single- and double-tailed azobenzene-substituted amphiphiles on the aggregation and packing behavior has been studied. The phase transition temperature of a membrane and the thermal half-life times of the cis azobenzene-substituted amphiphiles in membranes have been measured. Furthermore, the synthesis and properties of single-tailed azobenzene-substituted phosphate amphiphiles are described and compared with those of the double-tailed analogues. The single-tailed azobenzene-substituted phosphates have a low solubility in water and form micelles, sheets, and crystals. In all cases the trans-cis isomerization leads to a disturbance of the chain packing. Both single- and double-tailed cis azobenzene-substituted phosphates lowered the main phase transition temperature of bilayer membranes. The effect increased when the azobenzene moiety was situated closer to the head group. Accordingly, the half-life times of the cis azobenzene group was shorter when the azobenzene group was positioned closer to the head group for both the single- and double-tailed amphiphiles. Interestingly, the thermal cis-trans isomerization of the single-tailed azobenzene-substituted phosphates was faster in a DOPC membrane than that for the free monomer in aqueous solution.  相似文献   

6.
Photo-induced structural changes of azobenzene Langmuir-Blodgett films   总被引:2,自引:0,他引:2  
Structural changes of the Langmuir-Blodgett (LB) films of azobenzene accompanied by photoisomerization are described. First, photoisomerization is explained in terms of 'free volume'. In the polyion complex monolayers of amphiphiles having two azobenzene units at the air-water interface, the area per molecule depends on the polycation species. The fraction of cis-azobenzene in the LB films at the photostationary state under the illumination with UV light increased with increasing area per molecule, which is consistent with the concept of free volume. Second, a counter example of the concept of free volume is presented. Three-dimensional cone-shaped structures developed with trans-to-cis photoisomerization in the polyion complex LB film of a water-soluble amphiphilic azobenzene. These structures appeared and disappeared reversibly by alternate illumination with UV and visible light. The results indicate that the two-dimensional LB film structure exerts significant modification by photoisomerization. This is against the concept of free volume because this concept does not consider the possibility that the two-dimensional LB film structures may change into three-dimensional ones. Finally, photo-induced J-aggregate formation of non-photochromic and photochromic dyes is described. Two cyanine dyes were each mixed with an amphiphilic azobenzene in the LB films. These cyanine dyes are known to form J-aggregates in single-component LB films. In the mixed LB films, the J-aggregate formation was suppressed to some extent. The alternate illumination of the films with UV and visible light caused the photoisomerization of azobenzene in the mixed LB films, which triggered the J-aggregate formation of the cyanine dyes. The J-aggregate formation was accompanied by the development of three-dimensional cone-shaped structures from the film surface. When an amphiphilic merocyanine was mixed with the azobenzene in the LB films, J-aggregate formation was also induced by the alternate illumination with UV and visible light. This J-aggregate formation was also accompanied by a large morphological change: circular domains changed into fractal-like ones. The J-aggregate formation of the dyes and the concomitant morphological change were irreversible. In these cases, the photoisomerization of azobenzene served as a trigger to induce self-organization of the dye molecules.  相似文献   

7.
《Supramolecular Science》1998,5(1-2):49-59
Photo-reorientation experiments have been performed on LB films of polyglutamates with azobenzene side chains and copolyglutamates with azobenzene moieties and non-photochromic mesogens as side chains. Incorporation of the non-photochromic phenylbenzoate and methyl-substituted biphenyl side chains prevents aggregation of the chromophores, but does not change the LB film structure. Photo-reorientation upon irradiation with polarized light is suppressed by the side-chain structure in the LB film, independent of chromophore aggregation. This structure is disrupted if the amount of side chains which can be photo-isomerized exceeds a critical number. After the structure has been disrupted, photo-reorientation is possible. Not only the chromophores, but also the non-photochromic side chains are reoriented in a cooperative manner.  相似文献   

8.
The conformational preferences and prolyl cis-trans isomerization of oxidized and reduced Ac-Cys-Pro-Phe-Cys-NH2 (CPFC peptides) have been carried out using the ab initio HF/6-31+G(d) and hybrid density functional B3LYP/6-311++G(d,p) levels of theory. The most preferred conformations of oxidized and reduced CPFC peptides with the trans prolyl peptide bond have a type-I beta-turn for the Pro-Phe sequence in common. In particular, the transition states for both forms are stabilized by the intramolecular hydrogen bonds between the prolyl nitrogen and the N-H group of the Phe3 residue. The rotational barrier DeltaGct to the cis-to-trans isomerization for the oxidized CPFC peptide is calculated to be 19.37 kcal/mol at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory, which is lower by 0.88 kcal/mol than that of the reduced CPFC peptide. This may indicate that the rate constant kc-->t of the prolyl cis-to-trans isomerization for the oxidized form is about 4 times larger than that of the reduced form, which is reasonably consistent with the value deduced from NMR experiments. In particular, the increase in vibrational entropy for the transition state of the oxidized form over that of the reduced form contributes to enhance the rate constant for the prolyl cis-to-trans isomerization of the oxidized form.  相似文献   

9.
Reversible morphological changes occur with photoisomerization of azobenzene in Langmuir-Blodgett (LB) films complexed with polycations, which contradicts an implicit assumption of the concept of free volume that two-dimensional film structures are preserved during the photoisomerization. J-aggregates of chromophores are formed by two processes. The first process is "light-induced J-aggregation" in which photoisomerized molecules form J-aggregates. The other process is "triggered J-aggregation," in which photoisomerization of one of the components triggers J-aggregation of another chemical species in the mixed films. Both processes of J-aggregation are in many cases accompanied by large morphological changes of the films. However, LB films fabricated using processes under isobaric conditions do not change their morphology during light-induced J-aggregation and are patterned with J-aggregates using ultraviolet illumination through a photomask. Phase separation in mixed LB films gives rise to two-dimensional patterns, which are used to fabricate templates by using an amphiphilic silane-coupling agent as one of the components in the mixed LB films. Nanopatterns are also fabricated.  相似文献   

10.
合成了一种新型支化侧链型偶氮聚电解质PMAPB6P-AA.以偶氮生色团为探针,研究了这类聚电解质在混合溶剂中的H-聚集,以及H-聚集对偶氮生色团光响应性能的影响.研究发现,PMAPB6P-AA在水体积分数大于11%的DMF/H2O混合溶剂中形成H-聚集.偶氮苯离域电子的色散力是形成H-聚集的主要动力.与偶氮小分子MAPB6和MAPB6P相比,PMAPB6P-AA表现出更强的H-聚集能力,表明疏水作用和聚合物链的束缚作用等也是影响偶氮苯基团H-聚集能力的重要因素.H-聚集对PMAPB6P-AA光响应影响的明显特征是光响应速率减慢和光致顺反异构的效率降低.  相似文献   

11.
Polarized light leads to an effective reorientation of the optic axis in the glassy state of liquid-crystalline side chain polymers containing azobenzene mesogenic groups, via a trans-cis and cis-trans isomerization. Using a combination of U V and IR dichroitic studies it is shown for copolymers consisting of chromophores (azobenzene) and non-chromophores (phenylbenzoate) that only the chromophores are reoriented by light as far as the glassy state is concerned. Individual chromophores are thus addressed by photoselection. Photoselection in the fluid nematic state, on the other hand, leads also to a reorientation of the non-chromophores.  相似文献   

12.
A versatile synthetic method of azo-conjugated metalladithiolenes was developed, and new complexes with various central metals and substituent groups were synthesized. Molecular structures of the azo-conjugated metalladithiolenes of Ni(II), Pd(II), and Pt(II) with diphenylphosphinoethane as a co-ligand were determined by X-ray crystallography. While the energy of the reversible trans-to-cis photoisomerization is considerably lower than that of azobenzene, the thermal stability of the cis form is much higher than that of the organic azobenzene derivatives showing similar low-energy trans-to-cis photoisomerization. A novel proton response of the azo group occurs, and the combination of photoisomerization and protonation leads to a novel proton-catalyzed cis-to-trans isomerization, the rate of which correlates with the redox potential of the metalladithiolene moiety. The study including other azo-conjugated metalladithiolenes has indicated that the protonation is a common feature for the azo-conjugated metalladithiolenes, but trans-to-cis photoisomerization is strongly dependent on the electronic structure of the trans form or a steric effect in the cis form.  相似文献   

13.
The thermal cis-to-trans isomerization of 1,3-diphenyltriazene (DPT) has been investigated in buffered aqueous solutions by means of laser-flash photolysis techniques. The cis-to-trans isomerization process is found to be catalyzed by general acids and general bases as a result of acid/base-promoted 1,3-prototropic rearrangements. Acid catalysis is attributed to rate-limiting proton transfer to the nitrogen-nitrogen double bond of cis-DPT, whereas base catalysis is attributed to rate-limiting base-promoted ionization of the amino nitrogen of cis-DPT leading to the isomerization. In addition, a process ascribed to the interconversion of cis rotamers through hindered rotation around the nitrogen-nitrogen single bond is also observed; at high pH this process becomes rate-limiting.  相似文献   

14.
Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenylcylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum approximately 10% ee).  相似文献   

15.
Stimuli‐responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH‐ and temperature‐responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer‐by‐layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly.  相似文献   

16.
An amphiphilic dendron containing an azobenzene ring at the focal point and the l-glutamate peripheral groups was designed. Its monolayer formation and host-guest reaction with cyclodextrins at the air/water interface and the properties of the transferred Langmuir-Blodgett (LB) films were investigated. The individual dendron, although without any long alkyl chains, could still form a stable monolayer at the air/water interface because of the good balance between hydrophilic and hydrophobic parts within the molecule. When cyclodextrin (CyD) was added to the subphase, a host-guest reaction occurred in situ at the air/water interface. The inclusion of the focal azobenzene moiety into the cavity of cyclodextrin decreased the packing of the aromatic ring and also led to the diminishment of the molecular area. Both the films formed at the surface of pure water and aqueous cyclodextrins were transferred onto solid substrates. Nanofiber structures were obtained for the film from the water surface as a result of the packing of the azobenzene groups, and circular domains were obtained for the film transferred from the aqueous CyD phases. The film transferred from the water surface showed an exciton couplet in the absorption band of azobenzene, whereas a negative Cotton effect was obtained for the film from CyD subphases. It was found that the supramolecular chirality in the LB film transferred from water was due to the transfer of the molecular chirality to the assemblies whereas that from the CyD subphase was due to the inclusion of azobenzene into the chiral cavity. Interestingly, the film from the water surface was photoinactive, whereas a reversible optical and chiroptical switch could be obtained for the film from the α-CyD subphase. The work provided a way to regulate the assembly and functions of organized molecular films by taking advantage of the interfacial host-guest reaction.  相似文献   

17.
Azobenzene-containing monolayer with photoswitchable wettability   总被引:1,自引:0,他引:1  
A compact monolayer containing azobenzene has been prepared on silicon substrates. The elaboration route consisted of covalent grafting of freshly synthesized azobenzene moieties onto an isocyanate-functionalized self-assembled monolayer (SAM). The highly packed and ordered isocyanate-functionalized SAM and the azobenzene-functionalized SAM were monitored and characterized by contact angle measurements and X-ray reflectivity (XR). Photoswitching of the wettability of the film induced by the reversible cis-trans isomerization of the azobenzene chromophores is experimentally shown from water and olive oil contact angle measurements.  相似文献   

18.
We have investigated the influence of heat treatment in an air atmosphere (HT) and hydrothermal treatment in the liquid phase (HTTL) on the H-aggregate in a mixed Langmuir-Blodgett (LB) film of merocyanine dye with an octadecyl group (MS(18))-arachidic acid (C(20))-n-octadecane (AL(18)) ternary system by means of polarized visible and IR absorption spectroscopy. HT causes the variation from the H-aggregate to the monomer, the increment in the number of gauche conformers in the MS(18) hydrocarbon chain, the slight orientation change in the C(20) hydrocarbon chain, and the complete evaporation of AL(18). The dissociation of MS(18) is probably ascribed to the complete evaporation of AL(18) from the mixed LB film and the increase in thermal mobility of the long axis of the MS(18) hydrocarbon chain during HT. However, HTTL can easily and rapidly induce the conversion of the MS(18) aggregation state from H- to J-aggregates, the modification of the C(20) subcell packing from hexagonal to orthorhombic, and the removal of most of the AL(18) molecules. The conversion of the MS(18) aggregation state can be interpreted to consist of two processes from the H-aggregate to the monomer and from the monomer to the J-aggregate. In the initial stage of HTTL, the MS(18) aggregation state changes from the H-aggregate to the monomer, which is caused by the removal of almost all of the AL(18) molecules from the mixed LB film to warm water via the thermal energy of warm water. Then, the large relative permittivity of warm water is expected to relate strongly to the subsequent variation from the monomer to the J-aggregate. This transformation results in the decrease in the total value of the electrostatic energy based on the MS(18) permanent dipole interaction. Moreover, the modification of the C(20) subcell packing is possibly due to the hydrophobic effect, where the C(20) hydrocarbon chains cohere again in the warm water during HTTL. Consequently, it has been found that HTTL is quite effective to reorganize the chromophore alignment of MS(18), to modify the subcell packing of C(20) and to erase the majority of AL(18) molecules in the mixed LB film of the MS(18)-C(20)-AL(18) ternary system in a short time.  相似文献   

19.
本文合成了具有一定结构特点的偶氮苯的衍生物, 以元素分析和^1HNMR鉴定了B产物的组成和结构。采用L-B技术制备了其多层L-B膜, 以紫外可见光谱研究了膜中分子的聚集状态和膜的纵向均匀性; 以偏振紫外确定了膜中分子偶氮基的取向; L-B膜的小角度X射线衍射结果表明膜具有层状有序的周期性结构。  相似文献   

20.
The kinetics of the thermal cis-trans isomerization was determined in a series of crown ethers containing the azobenzene moiety incorporated into the crowns of various sizes (10- to 19-membered crowns), dissolved in liquid isooctane and in polymer matrixes (PMMA and polystyrene). The kinetic parameters (activation energies and pre-exponential factors) were determined from temporal evolution of the absorbance measured at one of the maxima due to the pi-pi* transition of the trans forms of the molecules, using both isothermal and nonisothermal procedures. Molecular structures and electronic spectra of both trans and cis forms were calculated employing an ab initio method with 3-21G* basis set and semiempirical ZINDO-S, respectively. A comparison of the quantum-chemical calculations with the experimental results shows that one may exclude the splitting of the UV absorption bands of the trans forms of the molecules under study that resulted from a coexistence of several conformations of these molecules. A linear relationship was found between the activation energy and logarithm of the pre-exponential factor of the thermally driven cis-trans isomerization: all molecules follow a common dependence, except for the smallest (10-membered) crown ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号