首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Understanding of the structural changes during their aggregation and interaction is a prerequisite for establishing the precise clinical relevance of human islet amyloid polypeptide (hIAPP) (involved in Type-II Diabetes Mellitus) in the treatment of Alzheimer's disease stemmed from beta-amyloid (Aβ). Herein, we show that the steady-state emission spectra obtained from photoluminescence (PL) simultaneously capture both the tyrosine derivative (tyrosinate) and the structure-specific intrinsic fluorescence during the aggregation of Aβ and hIAPP. We observe multiple peaks in the emission spectra which exist for structure-specific intrinsic fluorescence, and use the second derivative UV-Vis spectra and the shift in the tyrosine peak as a quantitative measure of the dissimilitude in the electronic states and the fibril growth. We further applied these techniques to detect the static electric field (0, 40, 120, 200 V/cm) induced promotion and inhibition of fibrillation in Aβ, hIAPP and their electric field dependent role in the fibrillation of Aβ : hIAPP(1 : 1). The results were corroborated by field-emission scanning electron microscopy (FESEM), and the determinations of secondary structures by Fourier transform infrared spectroscopy (FTIR). The results indicate that the emission spectrum can be used as a sensor to detect the presence of fibrils; hence for screening potential inhibitors of amyloid fibrillation.  相似文献   

2.
In order to search for novel field emitter nanomaterial, a density functional theory investigation is performed to understand electronic structures and field emission properties of carbon doped–ZnO nanotube. It has been revealed that electron transport through ZnONT is significantly increased in the presence of the carbon atom due to the reduced HOMO–LUMO energy gap, which makes the electrons easily excited from HOMO to LUMO, and then the electrons can easily emit. Comparing the ionization potentials of the pure and doped ZnONT, at the same external electric field strength, the ionization potential of C–doped ZnO nanotube is lower than that of pure one. Also, after the doping of carbon atom, the Fermi level of ZnONT increases, which indicates that the Fermi level shifts toward the conduction band. These results indicate that the field emission properties of ZnONT can be enhanced by the doping of ZnO nanotube with the carbon atom.  相似文献   

3.
We apply first‐principles calculations to investigate the effect of the electric field on boron nitride conical structures. The studies involve nanocones with different disclination angles. We applied fields of 0.3 V/Å and 0.6 V/Å parallel to the cone axis. It is shown that a small field does not affect the stability of such structures; however, for a larger field, a decrease of 0.1 eV/atom for all structures is observed. We also find modification in the energy gap due to the intensity of the electric field. The bandgap decreased proportionally to the intensity of the electric field, indicating that these results have consequences in the field emission properties of these structures. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
Electron field-emission measurements on individual carbon nanotubes (CNTs) were performed inside the transmission electron microscope (TEM). The field-emission characteristics of CNTs with different tip structures were compared, and their field conversion factor and emission area were studied systematically. It was found that the field-emission characteristics of a CNT depend sensitively on its tip structure, and in particular an opened CNT was shown to be superior to a capped CNT. High-resolution TEM observations revealed that the tip of an opened CNT may, in general, be regarded as being composed of irregular shaped graphitic sheets, and these graphitic sheets have been found to improve dramatically the field-emission characteristics, but the sharp edge may result in larger error in the calculated emission area. The influence of uncertainty in the work function of the CNTs on the field conversion factor and emission area calculation was also investigated.  相似文献   

5.
Aluminum nitride nanostructures are attractive for many promising applications in semiconductor nanotechnology. Herein we report on vapor-solid growth of quasi-aligned aluminum nitride nanocones on catalyst-coated wafers via the reactions between AlCl3 vapor and NH3 gas under moderate temperatures around 700 degrees C, and the growth mechanism is briefly discussed. The as-prepared wurtzite aluminum nitride nanocones grow preferentially along the c-axis with adjustable dimensions of the sharp tips in the range of 20-60 nm. The photoluminescence spectrum reveals a broad blue emission band with a fine photon structure while the field emission study shows a notable emission current with a moderate turn-on field as expected, suggesting their potential applications in light and electron emission nanodevices.  相似文献   

6.
(6R)-5,6,7,8-Tetrahydrobiopterin (BH(4)) is a key cofactor involved in the electron transfer to the P(450) heme of nitric oxide synthase. We calculated the electronic structure of the neutral, cationic, and anionic forms of BH(4) in the gas phase, in solution (both dielectric and explicit water), and in the protein environment using density functional theory (B3LYP/6-31+G(d,p)). Subsequently, we derived the ionization potential (IP) and electron affinity (EA) of the cofactor in these chemical environments. We found that the electronic structure of BH(4) is susceptible to the presence of an external electric field and that conformational changes in the structure of BH(4) alone do not affect its electronic structure significantly. In the gas phase, water, and protein environments neutral BH(4) is the most stable species, while in the dielectric environment the anion becomes the most stable species. The IP of BH(4) in the protein environment is about half of that in the gas phase, and its EA is about 5 times smaller than that in the gas phase. Our results indicate that changes in the external electric field created by moving charged amino acid residues around BH(4) may lead to configurations that have the BH(4) ion as stable as or more stable than the neutral form, thus facilitating the electron transfer.  相似文献   

7.
In this work we study the adsorptions of some small molecules or group on the hydrogenated C(100)-2×1 surface using density functional theory method. The calculated results show that the ionization potential (IP) of the hydrogenated C(100)-2×1 surfaces after adsorption has amphoteric characteristics. From the weak basic NH3 molecule with small IP and negative electron affinity (EA), through the neutral H2O molecule, to the weak acid HF molecule and the OH group with large EA and IP, the IP values of the adsorbed diamond surfaces vary from decrease, through invariability, to slight increase for HF and obvious increase for OH. In all adsorption species, only the OH group makes the hydrogenated C(100)-2×1 surface change to the metal from the semiconductor with a wide-band gap, while the others only introduce impurity states into the electronic structures of the hydrogenated C(100)-2×1 surfaces.  相似文献   

8.
It has been previously reported that the recently synthesized hexa‐peri‐hexabenzocoronene (HBC) nanographene cannot detect toxic chloropicrin (CP) gas. To overcome this problem, we examined the effect of Al doping and applying an electric field on the sensitivity of HBC towards CP gas by means of density functional theory calculations. We found that the Al‐doping process significantly increases the adsorption energy of CP gas from ?7.1 to ?39.9 kcal mol?1 but decreases the sensitivity of HBC. By applying an electric field, the HBC is polarized with two different electrostatic potentials on its different surfaces, which increases the adsorption energy. By increasing the electric field strength, the adsorption energy and electronic sensitivity of HBC are increased. We predicted that in the presence of an electric field of about ?0.025 au, HBC can act as an electronic senor or a work function‐type sensor with a short recovery time. At this field, the electrical conductivity of HBC is significantly increased on CP adsorption which generates an electrical signal. Increasing the electric field to higher intensities is not favourable because of increasing recovery times, and decreasing it to lower intensities reduces the sensitivity of HBC.  相似文献   

9.
Cubic boron nitride (c-BN) possesses a number of extreme properties rivaling or surpassing those of diamond. Especially, owing to the high chemical stability, c-BN is desired for fabricating electronic devices that can stand up to harsh environments. However, realization of c-BN-based functional devices is still a challenging task due largely to the subtlety in the preparation of high-quality c-BN films with uniform thickness and controllable properties. Here, we present a simple synthetic strategy by surface fluorination of few-layered hexagonal boron nitride (h-BN) sheets to produce thermodynamically favorable F-terminated c-BN nanofilms with an embedded N-N bond layer and strong inbuilt electric polarization. Due to these specific features, the fluorinated c-BN nanofilms have controllable band gap by thickness or inbuilt and applied electric fields. Especially, the produced nanofilms can be tuned into substantial ferromagnetism through electron doping within a reasonable level. The electron-doping-induced deformation ratio of the c-BN nanofilms is found to be 1 order of magnitude higher than those of carbon nanotubes and graphene. At sufficient high doping levels, the nanofilm can be cleaved peculiarly along the N-N bond layer into diamond-like BN films. As the proposed synthesis strategy of the fluorinated c-BN nanofilms is well within the reach of current technologies, our results represent an extremely cost-effective approach for producing high-quality c-BN nanofilms with tunable electronic, magnetic, and electromechanical properties for versatile applications.  相似文献   

10.
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)3XL] (X = Br, Cl; L = 1-(4-5'-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethylbenzimidazol-2-yl)pyridine (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively. The lowest lying absorptions were calculated to be at 481, 493, and 486 nm for 1-3, respectively, and all have the transition configuration of HOMO-->LUMO. The lowest lying transitions can be assigned as metal/ligand-to-ligand charge transfer (MLCT/LLCT) character for 1, ligand-to-ligand charge transfer (LLCT) character for 2, and mixed MLCT/LLCT and intraligand pi-->pi* charge transfer (ILCT) character for 3. The emission of 1 at 551 nm has the MLCT/(3)LLCT character, 2 has the (3)MLCT/(3)LLCT character at 675 nm, and the 651 nm transition of 3 has the character of (3)MLCT/(3)LLCT/(3)ILCT. Ionization potentials (IP) and electron affinities (EA) calculations show that the comparable EA and smaller IP values and the relatively balanceable charges transfer ability of 2 with respect to 1 and 3 result in the higher efficiency of OLEDs. The calculated results show that the absorption and emission transition character and device's efficiency can be changed by altering the ancillary ligands.  相似文献   

11.
GaN nanowires with P doping were synthesized via a simple thermal evaporation process. The P-doped GaN nanowires have average diameters of approximately 100 nm and lengths up to tens of micrometers. Scanning electron microscope and high-resolution field-emission transmission electron microscope analyses revealed that P doping results in a rough surface morphology of GaN nanowires. Field-emission measurements showed that P doping effectively decreases the turn-on field of GaN nanowire to 5.1 V/mum, holding promise of application as an electron emitter. The rough surface is responsible for enhancement of the field-emission properties of GaN nanowires.  相似文献   

12.
The single electron emission behaviors and characteristics from the well-defined quantized energy levels, corresponding to localized electronic states at the dome-structure tips, in single-walled carbon nanotubes (SWNTs) are investigated and illuminated by use of the energy level emission model in combination with the first-principles calculations on the electronic structures. Under the external electric field, the confined electrons are emitted simultaneously from each quantized energy level by virtue of the resonant tunneling effects. With increasing applied voltage, the emission current increases monotonically and exponentially up to the first peak value, and then steps into the increasing and decreasing "sawtoothlike" variations in sequence. The negative differential resistance or conductivity and the maximum current for SWNTs are simulated. The influences of localized electronic states and curvatures of the different closed tips on the single electron emission behaviors of SWNTs are evaluated and discussed. Also a few issues and applications relevant to electron emission of carbon nanotubes are addressed.  相似文献   

13.
As the attachment of a metal change the molecular and electronic structure of carbon clusters, the electronic properties as ionization potentials (IP) and electron affinities (EA) for small Lanthanum-carbon clusters LaC n with n=1–6 have been investigated theoretically. They were studied by density-functional-theory (DFT) within LDA and considering Gradient corrections (GC) for the exchange-correlation potential ( Becke-Perdew). The results for both quantities were obtained in good agreement with the experimental data: odd-even alternating IP’s, and no alternations for the EA’s. The different charge location in the carbon chains or at the La atom can explain the different trends of both quantities, respectively.  相似文献   

14.
We have investigated systematically the effects of various gas adsorbates (H2, N2, O2, and H2O) on the electronic structures and the field emission properties of open edges of single-walled carbon nanotubes by density functional calculations. All of the molecules, except N2, dissociate and chemisorb on open nanotube edges with large adsorption energies. The Fermi levels are moved toward the valence (conduction) bands for O2 (H2, H2O) adsorption induced by the Mulliken charge transfer on the tube edge. The Fermi level shift for N2 adsorption is negligible. Adsorption of H2O enhances the field emission current, whereas H2 adsorption does not affect the field emission current much because of the absence of the density of states near the Fermi level. The correlation of the electronic structures and the field emission current is further discussed.  相似文献   

15.
Electron impact excitation rate coefficients for singlet and triplet electronic states of the carbon monoxide molecule have been calculated under non-equilibrium conditions in the presence of radio-frequency electric field. A Monte Carlo simulation of electron transport has been performed in order to determine non-equilibrium electron energy distribution functions within one period of applied electric field. By using these distribution functions and corresponding cross sections, the excitation rate coefficients have been calculated for all electronic states of CO in the frequency range from 13.56 up to 500 MHz, at reduced root mean square electric field values ranging from 200 to 700 Td. We expect these rates to be valuable for modeling radio-frequency CO plasmas since excited neutrals exhibit greater chemical reactivity than neutrals in ground electronic state, hence altering many properties of plasma.  相似文献   

16.
DFT calculations were performed to investigation of the influence of doping three atoms of aluminum on the electronic properties of the (4,0) zigzag boron nitride nanotube (BNNT). Also, adsorption properties of nitrosamine (NA) and thionitrosamine (TNA) molecules as carcinogen agents onto BN and BAl3N nanotubes were studied. The results show that the B3AlN nanotube is the most energetically favorable candidates for adsorption of these molecules. Also, B(B3Al)NNT/TNA complexes are more stable than B(B3Al)NNT/NA complexes. The HOMO–LUMO gap, electronic chemical potential (μ), hardness (?), softness (S), the maximum amount of electronic charge (ΔNmax) and electrophilicity index (ω) for monomers and complexes in the gas and polar solvent phases were calculated. The results show that the conductivity and reactivity of BNNT increase by doping Al atoms instead of B atoms. Also, the interaction of NA and TNA molecules with BN and BAl3N nanotubes results in significant changes in the electronic properties of nanotubes. Based on the natural bond orbital (NBO) analysis, in all complexes charge transfer occurs from NA and TNA molecules to nanotubes. Theory of atoms in molecules (AIM) was applied to characterize the nature of interactions in nanotubes. It is predicted that, BN and B3AlN nanotubes can be used to as sensor for detection of NA and TNA molecules.  相似文献   

17.
Star‐shaped rigid molecules that comprise a 1,3,5‐trisubstitued benzene core and three oligoaryleneethynylene arms have great potential application in organic light‐emitting devices (OLEDs). Their optical and electronic properties are tuned by the star‐shaped molecular size. To reveal the relationship between the properties and structures, we perform a systemic investigation for these organic molecules. The ground and excited state molecules are studied using density functional theory (DFT), the ab initio HF, and the single excitation configuration interaction (CIS), respectively. And the electronic absorption and emission spectra are investigated with time‐dependent density functional theory (TDDFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials (IP), electron affinities (EA), absorption and emission spectra are controlled by the star‐shaped molecular size, which favor the hole and electron injection into OLEDs. With increasing the molecular conjugated length, the absorption and emission spectra exhibit red shifts to some extent and are in good agreement with the experimental ones. Also, the calculated emission spectra range from 330 to 440 nm. All the calculated show that the star‐shaped molecules are promising as blue light emitting materials  相似文献   

18.
A series of new 2-arylbenzothiazoles have been prepared in high yields by Jacobson's cyclization condensation of 2-aminobenzenethiol with benzoyl chloride or benzaldehyde derivatives under three different routes. These compounds have been fully characterized by EA, IR, NMR and MS. The electronic absorption and fluorescence of these compounds have been systematically investigated for the first time. The relationships between their photophysical properties and structures have been discussed. The alteration of absorption and emission wavelengths can be elucidated by Hammett's substituent constants.  相似文献   

19.
The single crystal octahedra of tetragonal CdMoO4 were synthesized on large scale via a microemulsion-mediated hydrothermal route at 120 degrees C for 10 h. The structures, compositions and morphologies of the as-prepared products were characterized by X-ray power diffraction pattern, field emission scanning electronic microscopy, transmission electron microscopy. Further studies reveal that the octahedral CdMoO4 crystal has eight equivalent exposed crystal faces {101}. The possible growth mechanism of the CdMoO4 octahedral is based on the anisotropic growth habit of CdMoO4 crystals and the selective absorption of surfactant molecules CTAB on the faces of the prime crystals, and the reaction time, composition of the microemulsions and temperature have considerable effects on the final morphology of CdMoO4.  相似文献   

20.
Taper- and rodlike Si nanowires (SiNWs) are synthesized successfully on Si and Si(0.8)Ge(0.2) substrates. The growth mechanisms of taper- and rodlike SiNWs are proposed to be oxide-assisted growth (OAG) and vapor-liquid-solid (VLS) growth, respectively. For taperlike SiNWs annealed at 1200 degrees C for 3 h, the emission peaks are found at 772, 478, and 413 nm. On the other hand, for rodlike SiNWs annealed at 1200 degrees C for 4 h, emission peaks are found at 783, 516, and 413 nm. From the field-emission measurements, the taperlike Si nanowires exhibit superior field-emission behavior with a turn-on field of 6.3-7.3 V/mum. The field enhancement, beta, has been estimated to be 700 and 1000 at low and high fields, respectively. The excellent field-emission characteristics are attributed to the perfect crystalline structure and the taperlike geometry of the Si nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号