首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A connected graph G, whose 2-connected blocks are all cliques (of possibly varying sizes) is called a block graph. Let D be its distance matrix. By a theorem of Graham, Hoffman and Hosoya, we have det(D)?≠?0. We give a formula for both the determinant and the inverse, D ?1 of D.  相似文献   

2.
A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color is equal to the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The list of minimal forbidden induced subgraphs for the class of coordinated graphs is not known. In this paper, we present a partial result in this direction, that is, we characterize coordinated graphs by minimal forbidden induced subgraphs when the graph is either a line graph, or the complement of a forest. F. Bonomo, F. Soulignac, and G. Sueiro’s research partially supported by UBACyT Grant X184 (Argentina), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil). The research of G. Durán is partially supported by FONDECyT Grant 1080286 and Millennium Science Institute “Complex Engineering Systems” (Chile), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil).  相似文献   

3.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. We have recently shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. A greedy max-clique decomposition is a particular kind cf greedy clique decomposition where maximum cliques are removed, instead of just maximal ones. In this paper, we show that any greedy max-clique decompositionC of a graph of ordern has, wheren(C) is the number of vertices inC.  相似文献   

4.
Motivated by earlier work on dominating cliques, we show that if a graph G is connected and contains no induced subgraph isomorphic to P6 or Ht (the graph obtained by subdividing each edge of K1,t, t ≥ 3, by exactly one vertex), then G has a dominating set which induces a connected graph with clique covering number at most t − 1. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 101–105, 1997  相似文献   

5.
The clique graph K(G) of a graph is the intersection graph of maximal cliques of G. The iterated clique graph Kn(G) is inductively defined as K(Kn?1(G)) and K1(G) = K(G). Let the diameter diam(G) be the greatest distance between all pairs of vertices of G. We show that diam(Kn(G)) = diam(G) — n if G is a connected chordal graph and n ≤ diam(G). This generalizes a similar result for time graphs by Bruce Hedman.  相似文献   

6.
We present a general framework to study enumeration algorithms for maximal cliques and maximal bicliques of a graph. Given a graph G, we introduce the notion of the transition graph T(G) whose vertices are maximal cliques of G and arcs are transitions between cliques. We show that T(G) is a strongly connected graph and characterize a rooted cover tree of T(G) which appears implicitly in [D.S. Johnson, M. Yannakakis, C.H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (1988) 119-123; S. Tsukiyama, M. Ide, M. Aiyoshi, I. Shirawaka, A new algorithm for generating all the independent sets, SIAM Journal on Computing 6 (1977) 505-517]. When G is a bipartite graph, we show that the Galois lattice of G is a partial graph of T(G) and we deduce that algorithms based on the Galois lattice are a particular search of T(G). Moreover, we show that algorithms in [G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone, Consensus algorithms for the generation of all maximal bicliques, Discrete Applied Mathematics 145 (1) (2004) 11-21; L. Nourine, O. Raynaud, A fast algorithm for building lattices, Information Processing Letters 71 (1999) 199-204] generate maximal bicliques of a bipartite graph in O(n2) per maximal biclique, where n is the number of vertices in G. Finally, we show that under some specific numbering, the transition graph T(G) has a hamiltonian path for chordal and comparability graphs.  相似文献   

7.
The clique-transversal number τc(G) of a graph G is the minimum size of a set of vertices meeting all the cliques. The clique-independence number αc(G) of G is the maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if these two numbers are equal for every induced subgraph of G. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a characterization by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained. For instance, in [Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs, Discrete Appl. Math. 156 (2008), pp. 1058–1082], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of those complements of line graphs that are clique-perfect, also by means of minimal forbidden induced subgraphs. This implies an O(n2) time algorithm for deciding the clique-perfectness of complements of line graphs and, for those that are clique-perfect, finding αc and τc.  相似文献   

8.
The clique graph of a graph is the intersection graph of its (maximal) cliques. A graph is self-clique when it is isomorphic with its clique graph, and is clique-Helly when its cliques satisfy the Helly property. We prove that a graph is clique-Helly and self-clique if and only if it admits a quasi-symmetric clique matrix, that is, a clique matrix whose families of row and column vectors are identical. We also give a characterization of such graphs in terms of vertex-clique duality. We describe new classes of self-clique and 2-self-clique graphs. Further, we consider some problems on permuted matrices (matrices obtained by permuting the rows and/or columns of a given matrix). We prove that deciding whether a (0,1)-matrix admits a symmetric (quasi-symmetric) permuted matrix is graph (hypergraph) isomorphism complete. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 178–192, 2003  相似文献   

9.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

10.
Let G be a simple connected graph and L(G) be its Laplacian matrix. In this note, we prove that L(G) is congruent by a unimodular matrix to its Smith normal form if and only if G is a tree.  相似文献   

11.
On clique convergent graphs   总被引:1,自引:0,他引:1  
A graphG isconvergent when there is some finite integern 0, such that then-th iterated clique graphK n(G) has only one vertex. The smallest suchn is theindex ofG. TheHelly defect of a convergent graph is the smallestn such thatK n(G) is clique Helly, that is, its maximal cliques satisfy the Helly property. Bandelt and Prisner proved that the Helly defect of a chordal graph is at most one and asked whether there is a graph whose Helly defect exceeds the difference of its index and diameter by more than one. In the present paper an affirmative answer to the question is given. For any arbitrary finite integern, a graph is exhibited, the Helly defect of which exceeds byn the difference of its index and diameter.  相似文献   

12.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted Tc(G),is the minimum cardinality of a clique- transversal set in G.In this paper we present the bounds on the clique-transversal number for regular graphs and characterize the extremal graphs achieving the lower bound.Also,we give the sharp bounds on the clique-transversal number for claw-free cubic graphs and we characterize the extremal graphs achieving the lower bound.  相似文献   

13.
The Laplacian of a directed graph G is the matrix L(G) = O(G) –, A(G) where A(G) is the adjaceney matrix of G and O(G) the diagonal matrix of vertex outdegrees. The eigenvalues of G are the eigenvalues of A(G). Given a directed graph G we construct a derived directed graph D(G) whose vertices are the oriented spanning trees of G. Using a counting argument, we describe the eigenvalues of D(G) and their multiplicities in terms of the eigenvalues of the induced subgraphs and the Laplacian matrix of G. Finally we compute the eigenvalues of D(G) for some specific directed graphs G. A recent conjecture of Propp for D(H n ) follows, where H n stands for the complete directed graph on n vertices without loops.  相似文献   

14.
Philip Hall's famous theorem on systems of distinct representatives and its not‐so‐famous improvement by Halmos and Vaughan (1950) can be regarded as statements about the existence of proper list‐colorings or list‐multicolorings of complete graphs. The necessary and sufficient condition for a proper “coloring” in these theorems has a rather natural generalization to a condition we call Hall's condition on a simple graph G, a vertex list assignment to G, and an assignment of nonnegative integers to the vertices of G. Hall's condition turns out to be necessary for the existence of a proper multicoloring of G under these assignments. The Hall‐Halmos‐Vaughan theorem may be stated: when G is a clique, Hall's condition is sufficient for the existence of a proper multicoloring. In this article, we undertake the study of the class HHV of simple graphs G for which Hall's condition is sufficient for the existence of a proper multicoloring. It is shown that HHV is contained in the class ℋ︁0 of graphs in which every block is a clique and each cut‐vertex lies in exactly two blocks. On the other hand, besides cliques, the only connected graphs we know to be in HHV are (i) any two cliques joined at a cut‐vertex, (ii) paths, and (iii) the two connected graphs of order 5 in ℋ︁0, which are neither cliques, paths, nor two cliques stuck together. In case (ii), we address the constructive aspect, the problem of deciding if there is a proper coloring and, if there is, of finding one. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 199–219, 2000  相似文献   

15.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

16.
LetG be a finite group and let S be a nonempty subset of G not containing the identity element 1. The Cayley (di) graph X = Cay(G, S) of G with respect to S is defined byV (X)=G, E (X)={(g,sg)|g∈G, s∈S} A Cayley (di) graph X = Cay (G,S) is said to be normal ifR(G) ◃A = Aut (X). A group G is said to have a normal Cayley (di) graph if G has a subset S such that the Cayley (di) graph X = Cay (G, S) is normal. It is proved that every finite group G has a normal Cayley graph unlessG≅ℤ4×ℤ2 orGQ 8×ℤ 2 r (r⩾0) and that every finite group has a normal Cayley digraph, where Zm is the cyclic group of orderm and Q8 is the quaternion group of order 8. Project supported by the National Natural Science Foundation of China (Grant No. 10231060) and the Doctorial Program Foundation of Institutions of Higher Education of China.  相似文献   

17.
A signed graph is a graph whose edges are labelled positive or negative. A signed graph is said to be balanced if the set of negative edges form a cut. The balanced induced subgraph polytopeP(G) of a graphG is the convex hull of the incidence vectors of all node sets that induce balanced subgraphs ofG. In this paper we exhibit various (rank) facet defining inequalities. We describe several methods with which new facet defining inequalities ofP(G) can be constructed from known ones. Finding a maximum weighted balanced induced subgraph of a series parallel graph is a polynomial problem. We show that for this class of graphsP(G) may have complicated facet defining inequalities. We derive analogous results for the polytope of acyclic induced subgraphs.Research supported in part by the Natural Sciences and Engineering Research Council of Canada; the second author has also been supported by C.P. Rail.  相似文献   

18.
We color the nodes of a graph by first applying successive contractions to non-adjacent nodes until we get a clique; then we color the clique and decontract the graph. We show that this algorithm provides a minimum coloring and a maximum clique for any Meyniel graph by using a simple rule for choosing which nodes are to be contracted. This O(n3) algorithm is much simpler than those already existing for Meyniel graphs. Moreover, the optimality of this algorithm for Meyniel graphs provides an alternate nice proof of the following result of Hoàng: a graph G is Meyniel if and only if, for any induced subgraph of G, each node belongs to a stable set that meets all maximal cliques. Finally we give a new characterization for Meyniel graphs.  相似文献   

19.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

20.
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号