首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
The cycloaddition of azides to alkynes is one of the most important synthetic routes to 1H-[1,2,3]-triazoles. Here a novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported. Primary, secondary, and tertiary alkyl azides, aryl azides, and an azido sugar were used successfully in the copper(I)-catalyzed cycloaddition producing diversely 1,4-substituted [1,2,3]-triazoles in peptide backbones or side chains. The reaction conditions were fully compatible with solid-phase peptide synthesis on polar supports. The copper(I) catalysis is mild and efficient (>95% conversion and purity in most cases) and furthermore, the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1,3-dipoles entering the reaction. Novel Fmoc-protected amino azides derived from Fmoc-amino alcohols were prepared by the Mitsunobu reaction.  相似文献   

2.
The growing applications of click chemistry   总被引:2,自引:0,他引:2  
Click chemistry, the subject of this tutorial review, is a modular synthetic approach towards the assembly of new molecular entities. This powerful strategy relies mainly upon the construction of carbon-heteroatom bonds using spring-loaded reactants. Its growing number of applications are found in nearly all areas of modern chemistry from drug discovery to materials science. The copper(I)-catalysed 1,2,3-triazole forming reaction between azides and terminal alkynes has become the gold standard of click chemistry due to its reliability, specificity and biocompatibility.  相似文献   

3.
A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.  相似文献   

4.
1,4-Disubstituted 1,2,3-triazoles were obtained by a high-yielding copper(I) catalyzed 1,3-dipolar cycloaddition reaction between in situ generated azides and terminal acetylenes. This one-pot, two-step procedure tolerates most functional groups and circumvents the problems associated with the isolation of potentially toxic and explosive organic azides.  相似文献   

5.
The tandem and stepwise Staudinger/aza-Wittig reactions of several azides were examined in detail. The tandem reaction method (Method I) exhibited superior results in the yield of the corresponding isothiocyanates bearing an electron-withdrawing group than the conventional stepwise method (Method II) which involves the sequential treatment of the azides with triphenylphosphine and then carbondisulfide. The mechanistic consideration for both reaction methods was proposed on the basis of the 1H-NMR analyses.  相似文献   

6.
Light can be used as an activator for the in situ generated copper(I)-catalyzed click reaction between azides and alkynes without adding reducing agents. The accumulation of sufficient concentration of copper(I) throughout the reaction can successfully be achieved by UV irradiation, in the presence of air.  相似文献   

7.
Stéphanie Durot 《Tetrahedron》2008,64(36):8496-8503
The Cu(I)-catalyzed dipolar cycloaddition of azides and terminal alkynes (‘click’ chemistry) has been used as a mild and efficient stoppering reaction for the preparation of new copper(I)-complexed rotaxanes.  相似文献   

8.
[reaction: see text] An efficient and improved procedure for the preparation of aromatic azides and their application in the Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition ("click reaction") is described. The synthesis of aromatic azides from the corresponding amines is accomplished under mild conditions with tert-butyl nitrite and azidotrimethylsilane. 1,4-Disubstituted 1,2,3-triazoles were obtained in excellent yields from a variety of aromatic amines without the need for isolation of the azide intermediates.  相似文献   

9.
A novel, efficient method has been developed for the synthesis of propargylamines through a three-component coupling of aryl azides, aldehydes, and alkynes in the presence of iron-iodine-copper(I) bromide as catalyst. This method is the first example for directly using aryl azides as an amino component in a three-component coupling reaction. Some of the major advantages of this protocol are: good yields, the involvement of a less-expensive and non-toxic catalyst, mild reaction conditions, and a wide range of substrates.  相似文献   

10.
Dextrans modified with alkyne and azide groups through hydrolysable carbonate esters form degradable microcapsules after Cu(I) catalysed 'click' reaction between azides and alkynes yielding triazole cross-links.  相似文献   

11.
Collaborative work between experimentalists and computational chemists have demonstrated a stong synergy which allowed the rationalization of allenyl azide chemistry and permited the development of an efficient synthetic tool aimed at the preparation of several alkaloids. Saturated allenyl azides undergo a reaction cascade involving key diradical intermediates that follow the Curtin-Hammett model whereas unsaturated allenyl azides form indolidene intermediates that furnish the final indole products via electrocyclic ring closure events taking place out of the Curtin-Hammett regime. The regiochemistry of the reaction cascade with the latter substrates can be manipulated by Cu(I) addition to the reaction mixture.  相似文献   

12.
We demonstrate selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. 1,2,3-Triazole formation between terminal acetylenes and organic azides is efficiently catalyzed by copper(I) complexes (a Sharpless "click" reaction), while the oxidized copper(II) complexes are inactive. By electrochemically activating or deactivating the catalyst by switching its redox state, we demonstrate control over triazole formation between surface-immobilized azides and ethynylferrocene. The reaction proceeds on the time scale of minutes using submicromolar concentration of reactants and catalyst, requires mild potentials for catalyst activation and deactivation, and works in aqueous and mixed aqueous-organic solvents. By appropriate biasing of each electrode, we selectively modify one of two chemically identical 10-mum-wide electrodes separated by 10 mum in an interdigitated array. The ability to switch on or off the reaction by electrical addressing together with the chemoselectivity of this reaction makes Cu(I)-catalyzed triazole formation an ideal method for the chemical modification of multielectrode arrays.  相似文献   

13.
Selective chemical reactions that are orthogonal to the diverse functionality of biological systems have become important tools in the field of chemical biology. Two notable examples are the Staudinger ligation of azides and phosphines and the Cu(I)-catalyzed [3 + 2] cycloaddition of azides and alkynes ("click chemistry"). The Staudinger ligation has sufficient biocompatibility for performance in living animals but suffers from phosphine oxidation and synthetic challenges. Click chemistry obviates the requirement of phosphines, but the Cu(I) catalyst is toxic to cells, thereby precluding in vivo applications. Here we present a strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst. The utility of the reaction was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.  相似文献   

14.
A novel and facile synthetic protocol for the construction of benzazepine and benzoxepine derivatives through a copper(I)‐catalyzed reaction of 2‐(2‐ethynylphenyl)‐1‐tosylaziridine or 2‐(2‐ethynylphenyl)oxirane with sulfonyl azides is disclosed. A ketenimine is the key intermediate during the reaction process.  相似文献   

15.
Fang Xie 《Tetrahedron》2008,64(13):2906-2914
Fluorogenic reactions have broad applications in biolabeling, combinatorial synthesis of fluorescent dyes, and materials development. It was recently reported that the highly selective and efficient Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction can be employed in designing new types of fluorogenic reactions. In this study, we report a fluorogenic reaction using anthracene azides as starting materials. The fluorescence of the anthryl core can be greatly inhibited upon introducing electron-donating azido groups in the proximity. Such weakly fluorescent anthracene azides demonstrate high reactivity with a variety of alkynes under the CuAAC conditions producing a strongly fluorescent triazole product with high quantum yields. This reaction can be used in the synthesis and screening of fluorescent dyes combinatorially. Compared with most existing methods, the fluorogenic CuAAC reaction is a much milder and simpler technique to prepare large libraries of fluorescent dyes without further purification. In order to demonstrate the efficiency of using anthracene azides for biolabeling applications, both small molecules and biomolecules including the multialkyne-derivatized cowpea mosaic virus and tobacco mosaic virus had been studied.  相似文献   

16.
[reaction: see text] The Cu(I)-catalyzed cycloaddition of alkynes and azides (click reaction) provides a robust method for the construction of macrocyclic small molecules via an intramolecular macrocycloaddition. A three-subunit system has been used to explore the tolerance of this macrocycloaddition to variations of stereochemistries and substituents.  相似文献   

17.
Pinhua Li  Yicheng Zhang 《Tetrahedron》2008,64(48):10825-10830
A novel SiO2-NHC-Cu(I) 3b was developed and used as a highly efficient catalyst for [3+2] cycloaddition of organic azides and terminal alkynes. In the presence of SiO2-NHC-Cu(I) 3b (1 mol %), the reactions of terminal alkynes with organic azides underwent smoothly to generate the corresponding regiospecific 1,4-disubstituted 1,2,3-triazoles in excellent yields under solvent-free reaction conditions at room temperature. Furthermore, catalyst 3b was quantitatively recovered from the reaction mixture by a simple filtration and reused for 10 cycles without loss of its activity.  相似文献   

18.
Alkynoic acids, in particular, 4-pentynoic acid derivatives, undergo intramolecular cyclizations to enol lactones under reaction conditions typically applied for the Cu(I)-catalyzed cycloaddition of terminal alkynes and azides (click chemistry). Starting from appropriate alkynoic acid derivatives, either enol lactones or 1,2,3-triazole click products can be obtained selectively by Cu(I) catalysis in aqueous media.  相似文献   

19.
Two synthetic methods for tetra- and trisubstituted N-H pyrroles are presented: (i) the thermal pyrrole formation by the reaction of vinyl azides with 1,3-dicarbonyl compounds via the 1,2-addition of 1,3-dicarbonyl compounds to 2H-azirine intermediates generated in situ from vinyl azides; (ii) the Cu(II)-catalyzed synthesis of pyrroles from alpha-ethoxycarbonyl vinyl azides and ethyl acetoacetate through the 1,4-addition reaction of the acetoacetate to the vinyl azides. By applying these two methods, regioisomeric pyrroles can be prepared selectively starting from the same vinyl azides.  相似文献   

20.
[reaction: see text] A one-pot reaction for Cu(II)-catalyzed diazo transfer and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (sometimes called click reaction) is reported. 1,4-Disubstituted 1,2,3-triazoles are obtained in excellent yields from a variety of readily available amines without the need for isolation of the azide intermediates. The reaction has a broad scope and is especially practical for the synthesis of multivalent structures because compounds substituted with multiple azides are potentially unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号