首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive colorimetric and ratiometric sensor for fluoride ion   总被引:1,自引:1,他引:0  
A new benzoimidazole-naphthalimide derivative 4 was synthesized and its photophysical properties were studied. This compound showed highly selectively and sensitive colorimetric and ratiometric sensing ability for fluoride anion.  相似文献   

2.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

3.
《中国化学快报》2021,32(10):3057-3060
Intracellular pH is a key parameter related to various biological and pathological processes. In this study, a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer (ESIPT) process. Relying on whether the ESIPT proceeds normally or not, ABTT exhibited the yellow fluorescence in acidic media, or cyan fluorescence in basic condition. According to the variation, ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances, and exported a steady ratiometric signal (I478/I546). Moreover, due to the ESIPT effect, large Stokes shift and high quantum yield were also exhibited in ABTT. Furthermore, ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully. These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.  相似文献   

4.
Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DNA sensor was employed to rapidly detect DNA damage induced by polystyrene nanosphere (PSNS) suspensions. In the sensor, a double-stranded DNA film was assembled on a semiconductor electrode, and a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine...  相似文献   

5.
The design and synthesis of a new pterin-based ratiometric and sensitive ‘naked-eye’ sensor R for highly selective recognition of acetate are reported. The acidic lactam NH and the NH of 2-N-pivaloyl group of receptor R along with 2,4-dinitrophenyl hydrazone group having the other acidic NH moiety lead to the binding of acetate anion in a 1:2 ratio by change of spectroscopic behavior on complexation (UV–vis and 1H NMR studies) which is also proven by Job plot. The sharp color change from light yellow to violet promises R to be a useful chromogenic ratiometric sensor for acetate amongst other common anions.  相似文献   

6.
Iron is one of the essential trace elements in the human body. It plays an important role in human biology and pathology. Deregulation of iron levels in cells is associated with disease development. In this work, we synthesized a novel near-infrared intramolecular charge transfer (ICT) based ratiometric fluorescent probe to detect Fe2+, by using naphthalimide and indole moieties as building blocks. Our work showed that the radiometric probe has excellent selectivity, sensitivity and rapid response. Moreover, we could successfully perform real-time monitoring of Fe2+ in HeLa cells and C. elegans.  相似文献   

7.
We disclosed a novel cruciform tri-coordinate organoboron compound, 2′,5′-bis{[(4-dimesitylboryl)phenyl]ethynyl}-1′,4′-bis[(4-N,N-diphenylamino)phenyl]-[1,1′:4′,1′]terphenyls, which displays a characteristic intramolecular charge transfer transition and is highly emissive both in solutions and solid state. The complexation with fluoride ions induces a large blue shift in fluorescence, enabling ratiometric fluorescence sensing of fluoride. In addition, its prompt response to fluoride ions was also observed even in the solid state.  相似文献   

8.
A ratiometric fluorescence sensor for Be2+ has been fabricated via alternate assembly of 2-(3,6-disulfo-8-hydroxynaphthylazo)-1,8-dihydroxynaphthalene-3,6-disulfonate (Beryllon II) and MgAl-LDH nanosheets on quartz substrates using the layer-by-layer (LBL) deposition technique. UV–vis absorption and the fluorescence emission spectroscopy indicate a stepwise and regular growth of the Beryllon II/LDH UTFs upon increasing deposition cycle. The film of Beryllon II/LDH possesses a periodic layered structure perpendicular to the substrate revealed by X-ray diffraction and scanning electron microscopy. Atomic force microscopy images show that the film surface is continuous and uniform. The Beryllon II/LDH UTFs display ratiometric fluorescence response for Be2+ with a linear response range in 1.0 × 10−7–1.9 × 10−6 mol L−1 and a detection limit of 4.2 × 10−9 mol L−1. Furthermore, the ratiometric sensor exhibits good repeatability, high stability (thermal, storage and mechanical) as well as excellent selectivity toward Be2+. XPS and Raman measurements demonstrate that the specific response of the sensor is attributed to the coordination between Be2+ and Beryllon II in the UTF. The Beryllon II/LDH UTFs in this work can be potentially used as a chemosensor for the detection of Be2+ in the environmental and biomedical field.  相似文献   

9.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

10.
Tandem repeats of short DNA sequences are commonly found in human DNA. These simple sequence repeats or microsatellites are highly polymorphic in the human genome. Since the anti-tumour agent cisplatin preferentially forms DNA adducts at runs of consecutive guanine nucleotides (poly(G)), the position and frequency of occurrence of poly(G) sequences in the updated human genome was investigated. There are more runs of consecutive guanines than would be expected by random chance. This especially true for poly(G) sequences longer than approximately n = 9. A plot of poly(G) length against log(observed/expected) frequency produced a straight line for n > 9. A similar observation was also found for poly(A) DNA sequence repeats. This data implied that the increase in observed/expected frequency is directly related to length of DNA repeat. It was proposed that long runs of consecutive guanine nucleotides could be a sensitive sensor of cellular DNA damage since a number of DNA damaging agents cause lesions at poly(G) sequences.  相似文献   

11.
Based on 4-bromo-1,8-naphthalic anhydride, one novel ratiometric fluorescence H2S-probe (IDNA) was designed and synthesized. Further studies indicate that IDNA can sensitively recognize H2S (detection limit of 7 μmol/L) with good selectivity and anti-interference ability. In addition, IDNA has satisfactory photostability in HeLa cells, ability of mitochondrial co-localization, and can be utilized in fluorescence imaging of H2S.  相似文献   

12.
We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO3) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO3 based on the Michael addition reaction with a limit of detection 5.3 × 10−8 M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application.  相似文献   

13.
A new approach for referencing of colorimetric chemosensors is described. The sensing materials rely on combination of absorption-based indicators and inorganic phosphors. Chromium(III)-activated yttrium aluminum borate and gadolinium aluminum borate were chosen to illustrate the new sensing scheme due to their spectral properties and high chemical and photochemical stability. The ratiometric luminescence read-out becomes possible due to the overlap of at least one form of the indicator with broadband emission (650–900 nm) or excitation (400–700 nm) of the phosphor. Long luminescence decay time of the phosphors (80–150 μs) allows for complete elimination of background fluorescence originating from the media, optical components or the indicator. The versatile scheme enables robust read-out of numerous colorimetric chemosensors and probes. Examples of sensing pH (using a BF2-chelated tetraarylazadipyrromethene dye as an indicator) and carbon dioxide (a triphenylmethane dye as an indicator) are provided. It is also demonstrated that temperature can be accessed via luminescence decay time of the phosphor to enable compensation of the sensors for temperature effects.  相似文献   

14.
Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg2+) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed. Upon addition of Hg2+, the Y-DNA structure was transformed to hairpin structure based on the formation of T-Hg2+-T complex. During the transformation, the redox MB gets close to and the redox Fc gets far away from the electrode surface, respectively. This special design allows a reliable Hg2+ detection with a detection range from 1 nM to 5 μM and a low detection limit down to 0.094 nM. Furthermore, this biosensor exhibits good selectivity and repeatability, and can be easily regenerated by using l-cysteine. This study offers a simple and effective method for designing ratiometric biosensors for detecting other ions and biomolecules.  相似文献   

15.
《中国化学快报》2020,31(6):1508-1510
We developed a merocyanine-based fluorescent probe,NEPB,for tracing hydrazine(N_2 H_4) in a ratiometric manner with large Stokes shifts and long emission wavelength.The fluorescence color of probe NEPB changed from green to yellow upon addition of hydrazine.Probe NEPB displayed high selectivity and sensitivity to hydrazine in solution,and could ratiometrically monitor N_2 H_4 in living cells and zebrafish with low cytotoxicity.  相似文献   

16.
5(Benzothiazol-2-yl)-4-hydroxyisophthalaldehyde (BHI), an intense ESIPT containing molecule in mixed media loses its properties due to resonance-assisted H-bond (RAHB) in absolute water. Due to resonance-assisted H-bond the o-aldehyde is more reactive than the other one. With addition of cysteine/homocysteine into this solution the o-aldehyde group gets transformed into thiazolidine/thiazine ring, respectively, and the phenolic proton becomes free enough for transfer to nitrogen of the benzothiazole ring in excited state, that is, the ESIPT of BHI is turned on. Thus we can detect cysteine/homocysteine in water as well as in live cells.  相似文献   

17.
Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.  相似文献   

18.
The synthesis and fluorescent properties of a novel cyclophane containing two l-valine units and one naphthalene chromophore are described. Synthesis of the macrocycle 1 was accomplished without using high-dilution methods in moderate to high yields. The fluorescence spectrum of 1 in neutral dichloromethane shows a band at 390 nm attributable to emission from an exciplex formed between the naphthalene unit and the neighboring amine groups. Addition of trifluoroacetic acid restores the typical naphthalene emission at 330 nm. Due to the fact that both emissions have similar intensities under the working conditions, the ratio between them can be used to obtain a ratiometric response to carboxylic acids in organic medium.  相似文献   

19.
A chlorinated coumarin-aldehyde was developed as a colorimetric and ratiometric fluorescent probe for distinguishing glutathione (GSH), cystenine (Cys) and homocysteine (Hcy). The GSH-induced substitution-cyclization and Cys/Hcy-induced substitution-rearrangement cascades lead to the corresponding thiol-coumarin-iminium cation and amino-coumarin-aldehyde with distinct photophysical properties. The probe can be used to simultaneously detect GSH and Cys/Hcy by visual determination based on distinct different colors – red and pale-yellow in PBS buffer solution by two reaction sites. From the linear relationship of fluorescence intensity and biothiols concentrations, it was determined that the limits of detection for GSH, Hcy and Cys are 0.08, 0.09 and 0.18 μM, respectively. Furthermore, the probe was successfully used in living cell imaging with low cell toxicity.  相似文献   

20.
A 3-indolylacrylate derivative, 3-IA, prepared by connecting an ethyl acrylate in 3-position of indole has been synthesised and characterised. Ethyl acrylate moiety acts as the Michael acceptor towards H2S, and the resultant addition product then participates in intramolecular cyclisation with the ester group at 2-position to form another new heterocyclic ring. Blue fluorescence of 3-IA turned into green in presence of H2S, leading to ratiometric behaviour of the fluorescent sensor with large stokes shift of 55 nm. Probe 3-IA has excellent selectivity towards H2S over other biothiols and other competing anions. Density function theory/time-dependent density function theory calculations were carried out to validate the reaction mechanism and the electronic properties of 3-IA. Importantly, the ratiometric probe 3-IA shows great promise in H2S detection by simple visual fluorescent inspection in filter paper-based protocol. The probe shows its excellent ability to detect H2S in different natural water samples. Furthermore, we have employed our probe to detect H2S for ratiometric imaging in live Vero cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号