首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Four water-soluble porous supramolecular organic framework drug delivery systems(sof-DDSs)have been used to adsorb doxorubicin(DOX)in water at physiological pH of 7.4,which is driven exclusively by hydrophobicity.The resulting complexes DOX@SOFs are formed instantaneously upon dissolving the components in water.The drug-adsorbed sof-DDSs can undergo plasm circulation with important maintenance of the drug and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells. DOX is released readily in the cancer cells due to the protonation of its amino group in the acidic medium of cancer cells.In vitro and in vivo experiments reveal that the delivery of SOF-a-d remarkably improve the cytotoxicity of DOX for the MCF-7/Adr cells and tumors,leading to 13-19-fold reduction of the IC50 values as compared with that of DOX.This new sof-DDSs strategy omits the indispensable loading process required by most of reported nano-scaled carriers for neutral hydrophobic chemotherapeutic agents,and thus should be highly valuable for future development of low-cost delivery systems.  相似文献   

2.
Core-shell nanoparticles of Au@silica with a diameter of approximate 45–60 nm and wall thickness in range of 3–10 nm were synthesized by using 40 and 50 nm gold nanoparticles as the templates. The mesoporous particles are regulated by 3-aminopropyltrimethoxysilane addition. Hollow mesoporous silica nanocapsules (HMSNs) were prepared by using sodium cyanide to dissolve the gold cores. The characterization of Au@silica and HMSNs by transmission electronic microscope indicated that the silica shells were uniform and smooth, and also the porosity was proved by fluorescein isothiocyanate (FITC) release experiments. The ratio of hollow core to HMSNs is more than 70%. HMSNs were subsequently used as drug carrier to investigate FITC (as a model drug) release behaviors in vitro. Fluorescent spectrometry was performed to determine the release kinetics from the HMSNs. The release profiles are significantly different as compared with the control (free FITC), which show that HMSNs are good drug carriers to control drug release, and have high potential in therapeutic drugs delivery in future applications.  相似文献   

3.
Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B, C, N, O, Si) and linked by robust covalent bonds to endow such material with desirable properties, i.e., inherent porosity, well-defined pore aperture, ordered channel structure, large surface area, high stability, and multi-dimension. As expected, the above-mentioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation, catalysis, optoelectronics, sensing, small molecules adsorption, and drug delivery. In this review, we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.  相似文献   

4.
A novel type of drug delivery system, termed NanoGel™ is proposed. NanoGel™ represent particles of a hydrophilic polymer network that were synthesized by cross-linking of polyethyleneimine (PEI) and carbonyldiimidazole-activated poly(ethylene glycol) (PEG) using emulsification/solvent evaporation technique. The resulting NanoGel™ was fractionated by gel-permeation chromatography. A major fraction with an average particle size of 120 nm was used in further experiments. Antisense phosphorothioate oligonucleotides (SODN) specific to human mdr1 gene were incorporated in these NanoGel™ particles. Loading of NanoGel™ particles with SODN resulted in reduction of the particle effective diameter to 80 nm and decreased zeta-potential due to neutralization of the charge of PEI chains by SODN. Accumulation of SODN incorporated in NanoGel™ particles in multidrug resistant (MDR) human oral epidermoid carcinoma cells (KBv) was significantly increased compared to the free SODN. Furthermore, efficient transport of SODN-loaded NanoGel™ particles across polarized monolayers of human intestinal epithelial cells (Caco-2) was demonstrated. Finally, antisense SODNs incorporated in NanoGel™ particles were found to effectively inhibit expression of P-glycoprotein (P-gp) efflux pump in MDR cell lines.  相似文献   

5.
Oral clonidine, used as an antihypertensive, can result in some side effects such as dry mouth, drowsiness, dizziness and sedation; thus, clonidine transdermal drug delivery (TDD) was considered. Use of the controlled release membrane was one of the methods in TDD systems to regulate the permeation properties. A new type of copolymer membrane that controlled clonidine linear release in TDD system was synthesized by UV radiation. This membrane consisted of three monomers: 2-hydroxy-3-phenoxypropylacrylate, 4-hydroxybutyl acrylate and diethyl maleate. The membrane had both fine permeation properties and perfect physical properties when three monomers were in the weight ratio of 4:4:2; this type of membrane was chosen as an optimized membrane. It was found that the membrane controlled clonidine zero-order release, the permeation rates decreased with the thicknesses of membranes increasing, and the permeation rates were linearly dependent on the square root of the concentration of clonidine. Furthermore, the optimized membranes were characterized by FTIR, DSC and SEM.  相似文献   

6.
Biodegradable amphiphilic graft copolymers with different compositions were synthesized by grafting poly(L-lactide) (PLLA) sequences onto a water-soluble poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. The critical micelle concentration (CMC) of the graft polymers was determined by fluorescence probe technique. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the graft polymers were proved to have low cytotoxicity. Based on the specific physicochemical property of the graft copolymers, submicron sized microsphere drug delivery systems were prepared by a very convenient "ultrasonic dispersion method", which did not involve toxic organic solvents. The drug-loaded microspheres had a regular spherical shape with a narrow size distribution. A hydrophobic drug, prednisone acetate, was encapsulated into polymeric microspheres and the in vitro drug release was studied.  相似文献   

7.
A set of amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) (PEG-b-PEB) copolymers based on the PEB hydrophobic block was first synthesized by ring-opening polymerization of ethylene brassylate with an organic catalyst. The EB/PEGmolar ratios and reaction times were adjusted to achieve different chain lengths of PEB. Block copolymers that were characterized by 1H NMR and GPC could selfassemble into multimorphological aggregates in aqueous solution, which were characterized by DLS and TEM. The hydrophobic doxorubicin (DOX) was chosen as a drug model and successfully encapsulated into the nanoparticles. The release kinetics of DOX were investigated.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号