首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nondoped organic light-emitting diodes (OLEDs) have drawn immense attention due to their merits of process simplicity, reduced fabrication cost, etc. To realize high-performance nondoped OLEDs, all electrogenerated excitons should be fully utilized. The thermally activated delayed fluorescence (TADF) mechanism can theoretically realize 100% internal quantum efficiency (IQE) through an effective upconversion process from nonradiative triplet excitons to radiative singlet ones. Nevertheless, exciton quenching, especially related to triplet excitons, is generally very serious in TADF-based nondoped OLEDs, significantly hindering the pace of development. Enormous efforts have been devoted to alleviating the annoying exciton quenching process, and a number of TADF materials for highly efficient nondoped devices have been reported. In this review, we mainly discuss the mechanism, exciton leaking channels, and reported molecular design strategies of TADF emitters for nondoped devices. We further classify their molecular structures depending on the functional A groups and offer an outlook on their future prospects. It is anticipated that this review can entice researchers to recognize the importance of TADF-based nondoped OLEDs and provide a possible guide for their future development.

The mechanism, exciton leaking channels, and reported molecular design strategies of TADF emitters for high-performance nondoped OLEDs are summarized. Their molecular structures depending on the functional A groups are further classified.  相似文献   

2.
The emission manners of organic light-emitting diodes(OLEDs) have experienced almost three-decade evolution.In this review,we briefly summarized the emission manners of OLEDs including:(ⅰ) emission from singlet exciton;(ⅱ) emission from triplet exciton;(ⅲ) emission from singlet exciton converted from triplet exciton.Then we introduced a new type of OLEDs with the emission from doublet exciton,wherein organic neutral radicals are used as emitters.Due to the spin-allowed transition of doublet excitons,using neutral radicals as emitters is believed to be a new way to break the 25%upper limit of internal quantum efficiency of OLEDs.The progress of emissive stable neutral radicals is also shortly reviewed.  相似文献   

3.
Organic light-emitting diodes (OLEDs) receive considerable attention because of their commercial use in flat panel displays. Herein, highly efficient spiroborate-based host materials are reported for use in blue OLEDs. Our designed spiroborates ( SBOX ) were simple to synthesize and exhibited high triplet excitation energies, narrow S-T gaps, and balanced charge carrier mobilities. A blue OLED containing one of the designed spiroborates, SBON , as a host exhibited a high external quantum efficiency (27.6 %) and low turn-on voltage (3.7 V) compared to those observed using 3,3′-di(9H-carbazol-9-yl)-1,1′-biphenyl (17.6 % and 4.5 V, respectively), indicating their potential as host materials in OLEDs.  相似文献   

4.
Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430–600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.  相似文献   

5.
《中国化学快报》2022,33(10):4645-4648
Improving the utilization of excitons has always been an important topic for the development of electroluminescence devices. In this work, we designed and synthesized three red TADF emitters TPA-DBT12, TPA-DBT3 and DTPA-DBT by employing dibenzothioxanthone (DBT) acceptor framework to stabilize the locally excited triplet state to participate in the reverse intersystem crossing (RISC) process. The fast RISC process and singlet radiation decay process gave rise to evidently enhanced exciton utilization. All of the red OLEDs based on these materials showed maximum EQE over 11% and high exciton utilization close to 100%. This work not only extend the acceptor framework for red materials but also provide a new perspective for the design of highly efficient red TADF materials with 100% exciton utilization by managing locally excited triplet state.  相似文献   

6.
《中国化学快报》2020,31(11):2965-2969
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

7.
In the active layer of organic solar cells (OSCs), the lifetime of triplet excitons is one of the decisive factors in the diffusion length and therefore has important impact on the power conversion efficiency of the devices. Herein, we have investigated singlet excited state relaxation dynamics and their triplet exciton lifetimes of two thiophene-coupled perylene diimides (PDI) dyads (2PDI-Th and fused-2PDI-Th), in order to provide a unique explanation in depth on their different performances in OSC devices. From the transient absorption (TA) spectra, the singlet excitons of 2PDI-Th form excimers in the time scale of 1.5 ps. Then the excimers go into the triplet state via intersystem crossing (ISC). In fused-2PDI-Th, triplet excitons are generated directly from the singlet excited excitons via the efficient ISC. Density functional theory (DFT) calculations further support the formation of excimers. DFT results indicate that 2PDI-Th exhibits an H-typed molecular configuration which is beneficial to form the excimers, while fused-2PDI-Th gives a twisted X-shaped configuration in the optimized ground and excited state. In steady-state emission spectra, 2PDI-Th shows abroad and featureless spectral characteristics of the excimers with a decay time of 840 ps, which is much shorter than those of PDI (5.5 ns) and fused-2PDI-Th (3.3 ns). The triplet lifetime (67 μs) of fused-2PDI-Th is factor of 3 longer than that of 2PDI-Th (22 μs). These results demonstrate that ring-fused structure is an efficient strategy to eliminate excimer formation and prolong the lifetime of triplet excitons, which provides a new insight for design of optoelectronic molecules for high efficiency organic solar cells.  相似文献   

8.
The development of organic light emitting diodes (OLEDs) based on fluorescent materials has made a great progress in improving light emitting efficiency and full range colors. But it still encounters the low singlet excitons generation ratio of 25% in device. As a solution to this problem, thermally activated delayed fluorescent (TADF) materials can convert the triplet excitons to the singlet ones, thus achieve theoretically 100% exciton utilization efficiency. Up to now, the small TADF molecules have achieved great breakthrough in realizing high external quantum efficiency and full color range including blue, green, and red. While the OLED devices based on macromolecules possess the inherent advantages of simplicity and lower cost in the rapid deposition of large areas at room temperature, especially on large flexible substrates, it is still relatively difficult to realize TADF effect in macromolecules, although several reports have partially confirmed them promising candidates for practical applications. This review summarizes the recent progress in the field of TADF polymers and their device performances in OLEDs, and also gives some outlooks for the further exploration in this field at the end of this paper. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 575–584  相似文献   

9.
Non‐doped organic light‐emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton use are generally unsuitable for non‐doped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation‐induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for non‐doped OLEDs. By grafting 4‐(phenoxazin‐10‐yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Non‐doped OLEDs of these AIDF luminogens exhibit excellent luminance (ca. 100000 cd m?2), outstanding external quantum efficiencies (21.4–22.6 %), negligible efficiency roll‐off and improved operational stability. To the best of our knowledge, these are the most efficient non‐doped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of non‐doped OLEDs.  相似文献   

10.
Recently, organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) materials have aroused huge attention in both academia and industry. Compared with fluorescent and phosphorescent materials, TADF materials can theoretically capture 100 % excitons without incorporating noble metals, making them effective emitters and hosts for OLEDs simultaneously. Here, in this review, our recent works on mechanisms and materials of high performance TADF‐sensitized phosphorescent (TSP) OLEDs, TADF‐sensitized fluorescent (TSF) OLEDs and TADF‐sensitized TADF (TST) OLEDs are summarized. Finally, we propose the outlook for the further development and application of TADF‐sensitized OLEDs.  相似文献   

11.
Much effort has been devoted to developing highly efficient organic light‐emitting diodes (OLEDs) that function through phosphorescence or thermally activated delayed fluorescence (TADF). However, efficient host materials for blue TADF and phosphorescent guest emitters are limited because of their requirement of high triplet energy levels. Herein, we report the rigid acceptor unit benzimidazobenzothiazole (BID‐BT), which is suitable for use in bipolar hosts in blue OLEDs. The designed host materials, based on BID‐BT, possess high triplet energy and bipolar carrier transport ability. Both blue TADF and phosphorescent OLEDs containing BID‐BT‐based derivatives exhibit external quantum efficiencies as high as 20 %, indicating that these hosts allow efficient triplet exciton confinement appropriate for blue TADF and phosphorescent guest emitters.  相似文献   

12.
Butterfly‐shaped luminescent benzophenone derivatives with small energy gaps between their singlet and triplet excited states are used to achieve efficient full‐color delayed fluorescence. Organic light‐emitting diodes (OLEDs) with these benzophenone derivatives doped in the emissive layer can generate electroluminescence ranging from blue to orange–red and white, with maximum external quantum efficiencies of up to 14.3 %. Triplet excitons are efficiently harvested through delayed fluorescence channels.  相似文献   

13.
白光有机发光二极管(white organic light-emitting diodes,WOLEDs)在全色显示、固态照明以及背光源等领域有巨大的应用前景,其研究备受关注.其中,荧光/磷光混合型WOLEDs因兼具荧光材料的长寿命和磷光材料的高效率,被认为是目前最有希望实现照明应用的器件结构.荧光/磷光混合型WOLEDs最重要的问题是要解决荧光材料的单线态激子和磷光材料的三线态激子的协同发光.为了避免单线态激子和三线态激子的相互猝灭问题,必须设计有效的器件结构.本文以两种不同三线态能级的蓝光荧光材料为研究对象,介绍了不同高性能荧光/磷光混合型WOLEDs的结构设计与性能.研究表明,载流子传输平衡的高效结构设计和激子分布宽范围内的有效调控是实现高性能荧光/磷光混合型WOLEDs的关键.  相似文献   

14.
Tao Y  Yang C  Qin J 《Chemical Society reviews》2011,40(5):2943-2970
Phosphorescent organic light-emitting diodes (PhOLEDs) unfurl a bright future for the next generation of flat-panel displays and lighting sources due to their merit of high quantum efficiency compared with fluorescent OLEDs. This critical review focuses on small-molecular organic host materials as triplet guest emitters in PhOLEDs. At first, some typical hole and electron transport materials used in OLEDs are briefly introduced. Then the hole transport-type, electron transport-type, bipolar transport host materials and the pure-hydrocarbon compounds are comprehensively presented. The molecular design concept, molecular structures and physical properties such as triplet energy, HOMO/LUMO energy levels, thermal and morphological stabilities, and the applications of host materials in PhOLEDs are reviewed (152 references).  相似文献   

15.
Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC(Tn)) between high-lying triplet levels (Tn) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC(Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m−2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.  相似文献   

16.
Recently, thermally activated delayed fluorescence (TADF) materials have received increasing attention as effective emitters for organic light‐emitting diodes (OLEDs). However, most of them are usually employed as dopants in a host material. In this report, carbazole dendrimers with a triphenyl‐s‐triazine core are reported, which are the first solution‐processable, non‐doped, high‐molecular‐weight TADF materials. The dendrimers were obtained by a new and facile synthetic route using the tert‐butyldimethylsilyl moiety as a protecting group. All dendrimers showed TADF in toluene. Measurements of the temperature‐dependent luminescence lifetime revealed that spin‐coated neat films also showed TADF with moderate quantum yields. OLED devices incorporating these dendrimers as spin‐coated emitting layers gave external quantum efficiencies of up to a 3.4 %, which suggests that this device is harvesting triplet excitons. This result indicates that carbazole dendrimers with attached acceptors are potential TADF materials owing to their polarized electronic structure (with HOMO–LUMO separation).  相似文献   

17.
Recently, pure organic thermally activated delayed fluorescence (TADF) emitters have attracted considerable interest from the scientific community in the field of organic light emitting diodes (OLEDs) as they can theoretically realize 100 % of the internal quantum efficiency by exploiting both the singlet and triplet excitons via the reverse intersystem crossing enabled by small singlet‐triplet energy splitting. Currently, the external quantum efficiency of the TADF emitters is reaching the level of phosphorescent emitters. Therefore, the TADF approach is considered as a potential alternative to the low efficiency conventional fluorescent and expensive phosphorescent emitters. In this account, we summarized our recent development of blue and green TADF molecular designs to improve the device performances of the TADF devices.  相似文献   

18.
Purely organic emitters that can efficiently utilize triplet excitons are highly desired to cut the cost of organic light‐emitting diodes (OLEDs), but most of them require complicated doping techniques for their fabrication and suffer from severe efficiency roll‐off. Herein, we developed novel luminogens with weak emission and negligible delayed fluorescence in solution but strong emission with prominent delayed components upon aggregate formation, giving rise to aggregation‐induced delayed fluorescence (AIDF). The concentration‐caused emission quenching and exciton annihilation are well‐suppressed, which leads to high emission efficiencies and efficient exciton utilization in neat films. Their nondoped OLEDs provide excellent electroluminescence efficiencies of 59.1 cd A−1, 65.7 lm W−1, and 18.4 %, and a negligible current efficiency roll‐off of 1.2 % at 1000 cd m−2. Exploring AIDF luminogens for the construction of nondoped OLEDs could be a promising strategy to advance device efficiency and stability.  相似文献   

19.
小分子铱配合物及其电致发光   总被引:1,自引:0,他引:1  
由于磷光金属配合物可以同时利用单线态和三线态激子发光,使有机电致发光器件的理论内量子效率达到100%,突破了25%的极限。因而以磷光金属配合物为发光材料制成的器件备受关注。在这些金属配合物中,铱配合物由于具有较强的发光特性、发光波长可调性、较好的热稳定性和电化学稳定性以及能够形成便于蒸镀的中性分子,而成为最有应用潜力的电致磷光材料。本文综述了近几年铱配合物磷光材料在分子设计与合成方法、发光机理及器件构筑等方面的研究进展。特别介绍与讨论了磷光铱配合物的两种发光机理,即基于同配体铱配合物或异配体铱配合物的主配体到中心金属离子的电荷转移三线态(3MLCT)发射和基于异配体铱配合物的辅助配体三线态(3LC)发射。根据反应条件的差异,归纳总结了合成铱配合物常用的4种方法以及合成fac式和mer式的铱配合物的方法。还根据材料的发光颜色及其电致发光的不同,对磷光铱配合物材料进行了分类与讨论。此外,简要介绍了用于器件制作的主体材料。最后,展望了金属有机配合物电致磷光材料的发展前景,并提出了今后磷光材料的发展方向。  相似文献   

20.
Aggregation‐induced delayed fluorescence (AIDF) can be regarded as a special case of aggregation‐induced emission (AIE). Luminogens with AIDF can simultaneously emit strongly in solid state and fully utilize the singlet and triplet excitons in organic light‐emitting diodes (OLEDs). In this work, two new AIDF luminogens, DMF‐BP‐DMAC and DPF‐BP‐DMAC, with an asymmetric D–A–D′ structure, are designed and synthesized. The characteristics of both luminogens are systematically investigated, including single crystal structures, theoretical calculations, photophysical properties and thermal stabilities. Inspired by their AIDF nature, the green‐emission non‐doped OLEDs based on them are fabricated, which afford good electroluminescence performances, with low turn‐on voltages of 2.8 V, high luminance of 52560 cd m?2, high efficiencies of up to 14.4 %, 42.3 cd A?1 and 30.2 lm W?1, and very small efficiency roll‐off. The results strongly indicate the bright future of non‐doped OLEDs on the basis of robust AIDF luminogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号