首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diverse range of novel and highly functionalized flavonoid-based tanaproget hybrids were synthesized and evaluated in vitro for their antimicrobial and antiproliferative activities. Novel products were synthesized in good yields (81–95%) under Pd-catalyzed reaction from bromo flavones and tanaproget boronic acids within 18–20 min at 60 °C. Bioassay results exhibited excellent activities against both hormone-dependent and hormone-independent human breast cancer cells (MCF-7, MDA-MB-231, DU-145, PC-3, and HeLa). Among them, compounds 4e, 9a, 9c, 9e, 9 g, 9 h, 9 m, and 9n displayed excellent activity. Compounds 4d, 4o, and 9o were found equally potent against C. albicans compared to fluconazole. Compound 5c showed better antibacterial activity against S. aureus. Compounds 5a, 9i, 9o, and 10c have shown admirable antibacterial activity against E. coli.  相似文献   

2.
An enhanced acetylcholinesterase (AChE) activity is a hallmark in early stages of Alzheimer's ailment that results in decreased acetylcholine (ACh) levels, which in turn leads to cholinergic dysfunction and neurodegeneration. Consequently, inhibition of both AChE and butyrylcholinesterase (BChE) is important to prolong ACh activity in synapses for the enhanced cholinergic neurotransmission. In this study, a series of new fluoroquinolone derivatives (7a-m) have synthesized and evaluated for AChE and BChE inhibitory activities. The screening results suggested that 7 g bearing ortho fluorophenyl was the most active inhibitor against both AChE and BChE, exhibiting IC50 values of 0.70 ± 0.10 µM and 2.20 ± 0.10 µM, respectively. The structure–activity relationship (SAR) revealed that compounds containing electronegative functions (F, Cl, OMe, N and O) at the ortho position of the phenyl group exhibited higher activities as compared to their meta- and/or para substituted counterparts. Molecular docking studies of synthesized compounds 7a, 7g, 7j and 7l docked into the active site of AChE and 7a-f docked into the active site of BChE revealed that these compounds exhibited conventional H-bonding along with π-π interaction with the active residues of AChE through their electronegative functions and phenyl ring, respectively. All the synthesized compounds are characterized by spectroscopic methods including FT-IR, 1H- and 13C NMR as well as elemental analysis. This is the first example of fluoroquinolone-based cholinesterase inhibitors.  相似文献   

3.
A comparative study between methanolic extract and n-hexane fraction of Typha domingensis (Typhaceae) was conducted for the evaluation of phytochemical potential, in vitro biological activities, and in-silico molecular docking studies. The phytochemical composition was estimated by total phenolic and total flavonoid contents, and by GC–MS analysis. Several biological activities were performed such as antioxidant assays (ABTS, FRAP, DPPH, & CUPRAC), enzyme inhibition activity (Tyrosinase, Acetylcholinesterase & Butyrylcholinesterase), thrombolytic activity, and antimicrobial activity (antibacterial & antiviral) to evaluate the medicinal importance of Typha domingensis. The results of the comparative study showed that methanolic extract has more total phenolic and total flavonoid contents (95.72 ± 5.76 mg GAE/g, 131.66 ± 7.92 mg QE/g, respectively) as compared to n-hexane fraction which confirms its maximum antioxidant potential (ABTS 114.31 ± 8.17, FRAP 116.84 ± 3.01, DPPH 283.54 ± 7.3 & CUPRAC 284.16 ± 6.5 mg TE/g). In the case of in vitro enzyme inhibition study and thrombolytic activity, better results were observed for methanolic extract. Almost similar antimicrobial patterns were observed for both methanolic extract and n-hexane fraction of Typha domingensis. The major bioactive phytochemicals identified by GC–MS were further analyzed for in-silico molecular docking studies to determine the binding affinity between ligands and the enzymes. The docking study indicated that most of the bioactive compounds showed a better binding affinity with enzymes as compared to the standard compounds (kojic acid & galantamine). The results of this study recommended that Typha domingensis has promising pharmaceutical importance and it should be further analyzed for the isolation of bioactive phytochemicals which may be useful for the treatment of several diseases.  相似文献   

4.
A novel series of N-substituted-benzimidazolyl linked para substituted benzylidene based molecules containing three pharmacologically potent hydrogen bonding parts namely; 2,4-thiazolidinedione (TZD: a 2,4-dicarbonyl), diethyl malonate (DEM: a 1,3-diester and an isooxazolidinedione analog) and methyl acetoacetate (MAA: a β-ketoester) (6a–11b) were synthesized and evaluated for in vitro α-glucosidase inhibition. The structure of the novel synthesized compounds was confirmed through the spectral studies (LC–MS, 1H NMR, 13C NMR, FT-IR). Comparative evaluation of these compounds revealed that the compound 9b showed maximum inhibitory potential against α-amylase and α-glucosidase giving an IC50 value of 0.54 ± 0.01 μM. Furthermore, binding affinities in terms of G score values and hydrogen bond interactions between all the synthesized compounds and the AA residues in the active site of the protein (PDB code: 3TOP) to that of Acarbose (standard drug) were explored with the help of molecular docking studies. Compound 9b was considered as promising candidate of this series.  相似文献   

5.
A small focused library of eighteen new 1,2,3-triazole tethered acetophenones has been efficiently prepared via click chemistry approach and evaluated for their antifungal and antioxidant activity. The antifungal activity was evaluated against five human pathogenic fungal strains: Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Cryptococcus neoformans. Among the synthesized compounds, 9c, 9i, and 9p found to be more potent antifungal agents that the reference standard. These 1,2,3-triazole based derivatives were also evaluated for antioxidant activity, and compound 9h was found to be the most potent antioxidant as compared to the standard drug. Furthermore, molecular docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of fungal C. albicans enzyme P450 cytochrome lanosterol 14a-demethylase. Moreover, the synthesized compounds were also analyzed for ADME properties and showed potential as good oral drug candidates.  相似文献   

6.
With the aim of reducing the adverse effects of fluoroquinolones in the environment, a complete design and screening system for the low biological enrichment and high photodegradabilities of 29 fluoroquinolones was established through a three-dimensional quantitative structure–activity relationship (3D-QSAR) model and molecular docking. The interaction mechanisms of the fluoroquinolones with Gram-negative bacteria (DNA gyrase in Escherichia coli) and Gram-positive bacteria (Topoisomerase IV in Staphylococcus aureus) were also evaluated. Consequently, the 3D-QSAR model showed that the 3- and 18-positions of the fluoroquinolones strongly affected their biological enrichment, and that the introduction of electropositive or hydrophobic groups at these positions reduced the logarithm of the octanol-water partition coefficient. Using nadifloxacin as a template, 23 derivatives with lower biological enrichment than nadifloxacin (decreased by 30.12%–94.18%) were designed. Meanwhile, the photodegradabilities of 15 derivatives were increased compared with nadifloxacin. Finally, the further screening by molecular docking of nadifloxacin and the above 15 derivatives with DNA gyrase and Topoisomerase IV showed that 13 of the derivatives had lower biological enrichment (decreased by 0.30%–16.76%) than nadifloxacin in the bacteria.  相似文献   

7.
A series of chromone derivatives containing substituted pyrazole were designed and synthesized. Preliminary bioassays showed that most of the synthesized compounds exhibited good nematicidal activity in vivo against Meloidogyne incognita at 10 mg/L.  相似文献   

8.
Thirty-two novel urea/thiourea compounds as potential kinase inhibitor were designed, synthesized and evaluated for their cytotoxic activity on breast (MCF7), colon (HCT116) and liver (Huh7) cancer cell lines. Compounds 10, 19 and 30 possessing anticancer activity with IC50 values of 0.9, 0.8 and 1.6 μM respectively on Huh7 cells were selected for further studies. These hit compounds were tested against liver carcinoma panel. Real time cell electronic sensing assay was used to evaluate the effects of the compounds 10, 19 and 30 on the growth pattern of liver cancer cells. Apoptotic cell death and cell cycle analysis upon treatment of liver carcinoma cells with hit compounds were determined. A significant apoptotic cell death was detected upon treatment of Huh7 and Mahlavu cells with compound 30 after 48 h of treatment. Additionally, compound 10 caused cell cycle arrest at G0/G1 phase. Mutagenicity of hit compounds was evaluated. Assertively, these compounds were not found to be mutagenic on Salmonella typhimurium strains TA98 and TA100. To understand the binding modes of the synthesized compounds, molecular docking studies were performed using the crystal data of VEGFR and Src-kinase enzymes in correlation with anticancer activities.  相似文献   

9.
Abstract

A series of 2-(substituteddithiocarbamoyl)-N-[4-((1H-imidazol-1-yl)methyl)phenyl]acetamide derivatives was designed and synthesized to combat the increasing incidence of drug-resistant fungal infections. All synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS spectra and elemental analyses. Antifungal activity tests were performed against four different fungal strains. Molecular docking studies were performed to investigate the mode of action towards the fungal lanosterol 14α-demethylase, a cytochrome P450-dependent enzyme. ADME studies were carried out and a connection between activities and physicochemical properties of the target compounds was determined. Most of the final compounds exhibited significant activity against Candida albicans and Candida krusei with MIC50 value 12.5?μg/mL. The results of in vitro anti-Candida activity, a docking study and ADME prediction revealed that the newly synthesized compounds have potential anti-Candida activity and evidenced the most active derivative, 5b (2-Pyrrolidinthiocarbonylthio-N-[4-((1H-imidazol-1-yl)methyl)phenyl]acetamide), which can be further optimized as a lead compound.  相似文献   

10.
A new series of novel diarylpyrazole derivatives as microtubule destabilizers were synthesized and evaluated for the anti-proliferative activities. Anti-proliferative assays were performed on the human cervix adenocarcinoma cell line (HeLa) and human gastric adenocarcinoma cell line (SGC-7901), and the compound 9s containing indole ring showed great anti-proliferative activity against HeLa cells with IC50 value of 1.9 ± 0.11 μM. Further biological studies showed that 9s was able to inhibit tubulin polymerization, disrupt the cytoskeleton, block the cell cycle in the G2/M phase, and induce cell apoptosis in a concentration-dependent manner. In addition, the results of molecular docking studies showed that compound 9s could bind tightly to the colchicine binding site of tubulin through hydrogen bonding interaction. These preliminary results recommend that compound 9s is likely to be a microtubule destabilizer that deserves further investigation.  相似文献   

11.
A series of novel 1,2,4-triazoles containing 1,2,3-thiadiazole derivatives were designed and synthesized. Their structures were confirmed by melting points, IR, 1H NMR, and elemental analysis and ESI-MS or HRMS. Preliminary bioassays indicated that these compounds exhibited very good insecticidal activity against Aphis laburni at 100 μg/mL, with mortality no less than 95%. Compounds 6a, 6c, 6f, 61 showed higher curative activity against TMV and compound 6h showed a higher induction effects against TMV in vivo at 100 μg/mL. Collectively, our data demonstrate a new strategy for control of insects and viruses.  相似文献   

12.
This work has described the synthesis of novel class (125) of benzofuran based hydrazone. The hybrid scaffolds (125) of benzofuran based hydrazone were evaluated in vitro, for their urease inhibition. All the newly synthesized analogues (125) were found to illustrate moderate to good urease inhibitory profile ranging from 0.20 ± 0.01 to 36.20 ± 0.70 µM. Among the series, compounds 22 (IC50 = 0.20 ± 0.01 µM), 5 (IC50 = 0.90 ± 0.01 µM), 23 (IC50 = 1.10 ± 0.01 µM) and 25 (IC50 = 1.60 ± 0.01 µM) were found to be the many folds more potent than thiourea as standard inhibitor (IC50 = 21.86 ± 0.40 µM). The elevated inhibitory profile of these analogues might be due to presence of dihydroxy and flouro groups at different position of phenyl ring B attached to hydrazone skeleton. These dihydroxy and fluoro groups bearing compounds have shown many folds better inhibitory profile through involvement of oxygen of dihydroxy groups in hydrogen bonding with active site of enzymes. Various types of spectroscopic techniques such as 1H-, 13C- NMR and HREI-MS spectroscopy were used to confirm the structure of all the newly developed compounds. To find SAR, molecular docking studies were performed to understand, the binding mode of potent inhibitors with active site of enzymes and results supported the experimental data.  相似文献   

13.
14.
In this study, we aimed to (i) synthesize new 2-methylindole analogs containing various amino structures, pyrrolidine, piperidine, morpholine, and substituted phenyl groups through structural and molecular modifications, (ii) evaluate the pharmaceutical potential of 2-methylindole analogs via assessing enzyme inhibitory activity against glutathione S-transferase (GST), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), (iii) predict ADMET and pharmacokinetic properties of the synthesized 2-methylindole analogs, (iv) reveal the possible interactions between the synthesized 2-methylindole analogs with GST, AChE, and BChE enzymes using several molecular docking software. In vitro enzyme inhibition assays showed that the synthesized indole analogs exhibited moderate to good inhibitory activities against GST, AChE, and BChE enzymes. Briefly, the inhibitory activities of the analogs 4b and 4i against AChE, 4a and 4b against BChE, and analogs 1 and 4i against GST were detected to be higher or close to the standard inhibitor compounds. The analog 4b was detected to have the best inhibitory activity against both AChE and BChE enzymes with the lowest IC50 values as 0.648 µM for AChE and 0.745 µM for BChE. The analyses of enzyme inhibition relationship with the synthesized analogs could help to design new analogs for the inhibitors of cholinergic and glutathione pathways based on the indole derivatives.  相似文献   

15.
The complexes of Co(II), Ni(II), Cu(II) and Zn(II) metal ions has been synthesized through template method by the condensation of succinic acid dihydrazide with 5-chloroisatin in alcoholic medium. Complexes were characterized by C H N analysis, molar conductance, thermal analysis, magnetic susceptibility, mass spectrometry, FTIR, EPR, 1H NMR, UV–Visible spectroscopy. These studies suggest an octahedral geometry for all the complexes. The compounds were found active against B. subtilis and S. aureus and P. aeruginosa and E. coli bacteria. The Zn(II) complex showed significant anticancer activity against Squamous Cell Carcinoma cells tested by the MTT assay method. Molecular docking studies with EGFR tyrosine kinase were also carried out. All these results show that some of the synthesized compounds have remarkable antibacterial and anticancer property.  相似文献   

16.
A series of novel 3,3′-(3,3′-(dihydroxy/hydroxyethane-1,2-diyl)bis(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6,3-diyl))bis(2H-chromen-2-ones) were prepared by the condensation of thiocarbohydrazide with tartaric acid or malic acid followed by various 3-(2-bromoacetyl)-2H-chromen-2-ones in two steps with good yields. All the synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and mass) data. These synthesized bis(triazolothiadiazinyl coumarin) compounds were evaluated for broad spectrum of antiviral activity. Among all the tested compounds, compound 5f exhibited antiviral activity against H1N1 virus. The molecular docking studies of these compounds against H1N1 neuraminidase enzyme were performed. The binding affinity and binding values were compared with standard drugs.  相似文献   

17.
A highly efficient, green, one-pot, four-component approach for the synthesis of benzylpyrazolyl naphthoquinone derivatives (5a–p) have been developed by the domino reaction of 2-hydroxy naphthoquinone, aromatic aldehyde, ethyl acetoacetate, and phenyl hydrazine derivatives in water and employed p-toluene sulfonic acid (p-TSA) as the right choice of catalyst at reflux. Docking simulation was performed to position compounds 5a, 5b, and 5g into the anaplastic lymphoma kinase (ALK) structure active site to determine the probable binding model.  相似文献   

18.
A series of novel neonicotinoid analogues were designed and synthesized by introducing a hydrazide group into clothianidin. Their structures were confirmed by IR, 1H NMR, and HRMS (ESI). Preliminary bioassay showed that some compounds, Sb and Sg, exhibited good activity against soybean aphids (Aphis glycines) at 100 mg L ^-1. In addition, molecular docking with receptor was carried out to explain their different activity from clothianidin.  相似文献   

19.
20.
Abstract

A series of aroyl selenourea dibenzosuberene (1–3) derivatives were synthesized and characterized by different analytical methods and single crystal X-ray crystallography. Quantum chemical computations were made using DFT to determine the structural and molecular properties of the compounds. The in vitro antibacterial action of the compounds was evaluated against chosen gram-negative (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), and gram-positive (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus epidermidis) bacteria for their antifungal activity against Curvularia lunata, Penicillium notatum, and Aspergillus niger. Using molecular docking studies, the binding modes were understood along with the mechanism in opposing the target protein MurB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号