首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Star-shaped electron acceptors based on perylene bisimide as end groups and spiro-aromatic core linked with ethynyl units were developed for nonfullerene solar cells. Ethynyl linkers are able to improve the planarity of conjugated backbone, resulting in enhanced electron mobility and power conversion efficiency in solar cells.  相似文献   

2.
Non-fullerene organic solar cells have received increasing attentions in these years, and great progresses have been made since 2013. Among them, aromatic di-amide/imide-containing frameworks have shown promising applications. The outstanding properties of them are highly associated with their unique electronic and structural features, such as strong electron-withdrawing nature, broad absorption in UV-visible region, tunable HOMO/LUMO energy levels, easy modifications, and excellent chemical, thermal and photochemical stabilities. In this review, we give an overview of recent developments of aromatic diamide/imide-containing small molecules used as electron acceptors for organic solar cells.  相似文献   

3.
Two simple unfused-cores based electron acceptors with different side units were developed for application in non-fullerene solar cells, in which the side chains have the significant effect on their absorption spectra and photovoltaic performance.  相似文献   

4.
Two polymers containing(E)-2,3-bis(thiophen-2-yl)acrylonitrile(CNTVT) as a donor unit, perylene diimide(PDI) or naphthalene diimide(NDI) as an acceptor unit, are synthesized by the Stille coupling copolymerization, and used as the electron acceptors in the solution-processed organic solar cells(OSCs). Both polymers exhibit broad absorption in the region of 300–850 nm. The LUMO energy levels of the resulted polymers are ca. –3.93 eV and the HOMO energy levels are –5.97 and –5.83 eV. In the binary blend OSCs with PTB7-Th as a donor, PDI polymer yields the power conversion efficiency(PCE) of up to 1.74%, while NDI polymer yields PCE of up to 3.80%.  相似文献   

5.
最近几年,有机太阳能电池中的非富勒烯小分子受体研究引起了人们的兴趣。其中,苝二酰亚胺(PDI)类分子因具有良好的电子传输能力,较强的电子亲和力,稳定的光、热、化学性能以及化学结构的可设计性带来的性能可调控性而得到广泛的关注。本文总结了近三年来在体异质结有机太阳能电池应用方面PDI小分子受体的研究进展,重点关注了PDI分子结构对其性能的影响,希望为以后PDI类受体分子的设计思路起到一定的启发作用。  相似文献   

6.
Three small molecules with the same arms and different cores of perylene diimide(PDI)or indaceno[2,1-b:6,5-b']dithiophene(IDT)were designed and synthesized as the acceptor materials for P3HT-based bulk-heterojunction(BHJ)solar cells.The impacts of the different cores on the optical absorption,electrochemical properties,electron mobility,film morphology,photoluminescene characteristics,and solar cell performance were thoroughly studied.The three compounds possess a broad absorption covering the wavelength range of 400–700 nm and relatively low lowest unoccupied molecular orbital(LUMO)energy levels of?3.86,?3.81 and?3.99 eV.The highest power conversion efficiency of 0.82%was achieved for the BHJ solar cells based on SM3 as the acceptor material,the compound with a PDI core.  相似文献   

7.
The large D core of DFPCBR results in efficient P3HT-based OSCs with a high VOC and thickness insensitivity.  相似文献   

8.
9.
A star-shaped electron acceptor with porphyrin as core and rhodanine-benzothiadiazole as end groups linked with ethynyl units was developed for non-fullerene solar cells, in which a PCE of 1.9% with broad photo response was achieved when combining with a diketopyrrolopyrrole-polymer as electron donor.  相似文献   

10.
The recent progress of wide bandgap (WBG) donor polymers for non-fullerene polymer solar cells (NF-PSCs) were reviewed in detail, which was classified by D-type and D-A type molecular backbones to discuss the related structure-property correlations and put forward an outlook for future innovations.  相似文献   

11.
After additive and thermal annealing treatment, the PM6:Y15 based device obtains a high power conversion efficiency of 14.13%.  相似文献   

12.
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.  相似文献   

13.
The solar cell surface morphologies with different additives observed with slightly changed in roughness. It is easily to get the best PCE of 11.1% with using 0.5% DIO additives.  相似文献   

14.
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future. Here, the strategy that uses chemical structure modification to optimize the photoelectric properties is reported. A new narrow bandgap (1.30 eV) chlorinated non-fullerene electron acceptor (Y15), based on benzo[d][1,2,3] triazole with two 3-undecyl-thieno[2′,3′:4,5] thieno[3,2-b] pyrrole fused -7-heterocyclic ring, with absorption edge extending to the near-infrared (NIR) region, namely A-DA'D-A type structure, is designed and synthesized. Its electrochemical and optoelectronic properties are systematically investigated. Benefitting from its NIR light harvesting, the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency (PCE) of 14.13%, when blending with a wide bandgap polymer donor PM6. Our results show that the A-DA'D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells (PSCs).  相似文献   

15.
Indacenodithiophene (IDT) derivatives are kinds of the most representative and widely used cores of small molecule acceptors (SMAs) in organic solar cells (OSCs). Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF (n = 0, 2, 4). The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement, and their electronic energy levels downshift with increasing n. Due to the advantages of Jsc and FF as well as acceptable Voc, the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency (PCE) of 13%, better than the OSC devices based on IDIC and IDIC-4F as acceptors. And the photovoltaic performance of the PTQ10: IDIC-2F OSCs is insensitive to the active layer thickness: PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm, respectively. This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs. Meanwhile, the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.  相似文献   

16.
Xiao  Bo  Zhang  Qianqian  Li  Gongqiang  Du  Mengzhen  Geng  Yanfang  Sun  Xiangnan  Tang  Ailing  Liu  Yingliang  Guo  Qiang  Zhou  Erjun 《中国科学:化学(英文版)》2020,63(2):254-264
Poly(3-hexylthiophene)(P3HT)is one of the most used semiconducting polymers for organic photovoltaics because it has potential for commercialization due to its easy synthesis and stability.Although the rapid development of the small molecular non-fullerene acceptors(NFAs)have largely improved the power conversion efficiency(PCE)of organic solar cells(OSCs)based on other complicated p-type polymers,the PCE of P3HT-based OSCs is still low.In addition,the design principle and structure-properties correlation for the NFAs matching well with P3HTare still unclear and need to be investigated in depth.Here we designed a series of NFAs comprised of acceptor(A)and donor(D)units with an A2-A1-D-A1-A2 configuration.These NFAs are abbreviated as Qx3,Qx3 b and Qx3c,where indaceno[1,2-b:5,6-b′]dithiophene(IDT),quinoxaline(Qx)and 2-(1,1-dicyanomethylene)rhodanine serve as the middle D,bridged A1 and the end group A2,respectively.By subtracting the phenyl side groups appended on both IDT and Qx skeletons,the absorption spectra,energy levels and crystallinity could be regularly modulated.When paired with P3 HT,three NFAs show totally different photovoltaic performance with PCEs of 3.37%(Qx3),6.37%(Qx3b)and 0.03%(Qx3 c),respectively.From Qx3 to Qx3b,the removing of phenyl side chain in the middle IDT unit results in the increase of crystallinity and electron mobility.However,after subtracting all the grafted phenyl side groups on both IDT and Qx units,the final molecule Qx3 c exhibits the lowest PCE of only 0.03%,which is mainly attributed to the serious phase-separation of the blend film.These results demonstrate that optimizing the substituted position of phenyl side groups for A2-A1-D-A1-A2 type NFAs is vital to regulate the optoelectronic property of molecule and morphological property of active layer for high performance P3HT-based OSCs.  相似文献   

17.
《Mendeleev Communications》2023,33(3):314-317
Two new non-fullerene acceptors based on perylene diimide with acetylenic bridges were designed and synthesized employing Stille and Sonogashira coupling reactions as the key steps. Their optical and electronic properties were explored by UV–VIS spectroscopy and cyclic voltammetry, and energies of frontier molecular orbitals were estimated. Their preliminary studies in perovskite solar cells as electron transport materials showed the best power conversion efficiency for photocells of 14.18% value.  相似文献   

18.
The PBDB-TBT1:ITIC-based device obtains PCE of 9.09%, and is insensitive to additive and thermal annealing, and forms microstructural morphology.  相似文献   

19.
《Tetrahedron》2019,75(38):130514
This study presents the synthesis, characterization, and electrochemical properties of four new dialkoxymethanofullerenes, as well as their performance in organic solar cells (OSCs) devices. Dialkoxymethanofullerenes were synthesized in 27%–32% yield by thermolysis of dialkoxyoxadiazolines and reaction with C60 under reflux in toluene. The prepared compounds were then characterized and used for the first time as electron-acceptor materials in thin-film bulk heterojunction OSCs with PBTZT-stat-BDTT-8 as the electron donor material. The devices made with ethoxy-hexyloxymethanofullerene and methoxy-hexyloxymethanofullerene exhibited optimal power conversion efficiencies (PCEs) of 3.79% and 4.65%, with open-circuit voltage of 0.832 and 0.831 V, respectively. In contrast, the devices made with ethoxy-ethoxymethanofullerene and methoxy-ethoxymethanofullerene exhibited very low PCEs of <0.01% for both, indicating a large impact of the substituents on device performance.  相似文献   

20.
We report the synthesis of a series of copolymers, having 2,2′-bithiophene as electron-donating moiety, and perylene diimide (PDI) and/or naphthalene diimide (NDI) as electron-accepting moiety, and employed as non-fullerene acceptors in polymer solar cells (PSCs). All the copolymers show wide absorption varying from 300 to 850 nm in the visible and NIR spectrum. When changing the PDI/NDI ratio in the polymer backbone, The LUMO energy levels vary in the range of −3.90 to −3.80 eV and the HOMO energy levels vary in the range of −6.10 to −5.85 eV. Among PSCs based on PTB7-Th donor and these polymer acceptors, the devices based on PTB7-Th/NDI100 yield the best power conversion efficiency (PCE) of 4.67%, while the PTB7-Th/PDI100-based devices yield a PCE of 1.03%. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 682–689  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号