首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.  相似文献   

2.
《中国化学快报》2020,31(6):1588-1592
Porous carbon materials doped with atomically dispersed metal sites(ADMSs) are promising electrocatalysts for oxygen reduction reaction(ORR) electrocatalysis.In this work,we fabricated hierarchical porous nitrogen-doped carbon nanofibers with atomically dispersed Fe-N_4 sites by carbonization of electrospinning iron-based metal-organic frameworks(MOFs)/polyacrylonitrile nanofibers for ORR electrocatalysis.Remarkably,the re sultant carbon nanofibers with atomically dispersed FeN_4 sites exhibit extraordinary electrochemical performance with an onset potential of 0.994 V and a halfwave potential of 0.876 V in alkaline electrolyte,comparable to the benchmark commercial Pt/C catalyst.The high catalytic performance is originated from the unique hierarchically porous 1 D carbon structure and abundant highly active atomically dispersed Fe-N_4 sites.  相似文献   

3.
为了推动清洁能源-燃料电池的广泛应用, 迫切需要研发成本低、 原料来源广泛的过渡金属基高效氧还原反应(ORR)催化材料, 来替代目前使用的贵金属铂基催化材料. 本文以铁和钴等非贵金属离子作为催化材料的主要活性位点, 通过金属-羧基/羟基螯合键原位预锚定在具有三维(3D)孔道结构、 富含羧基和羟基以及极易在水溶液中形成凝胶网络的海洋生物质材料海藻酸钠上, 经冷冻干燥得到气凝胶; 然后通过高温碳化, 得到活性位点均匀分布在具有多级孔结构的碳骨架中的高活性、 高稳定的Co/Zn/Fe/N@bio-C-2氧还原催化剂材料, 该催化剂包含2种不同的铁基活性材料(Fe2O3和Fe)以及2种不同的钴基活性材料(CoO和Co).利用硝酸锌作为活化剂来改善催化材料的孔道结构, 使制备碳材料的总面积从149.3 m2/g增加到325.3 m2/g. 通过一系列对比实验发现, Fe/Co双活性位点与合适比表面积的协同作用使得Co/Zn/Fe/N@bio-C-2获得了最佳的ORR催化活性.其在0.1 mol/L KOH溶液中起始电位达到0.99 V, 半波电位可达0.87 V.  相似文献   

4.
向Fe/N/C非贵金属催化剂中再引入S掺杂是进一步提高其氧还原催化活性的有效方法。为了探究活性提高的原因,本文以三聚氰胺-甲醛树脂为前驱体,氯化钙为模板,氯化铁为铁源,通过添加硫氰化钾(KSCN)来控制热解催化剂的S掺杂量。通过对比分析催化剂的物化性质,结合密度泛函理论(DFT)计算,分析S掺杂促进Fe/N/C催化剂氧还原活性的原因。透射电子显微镜(TEM)和N_2吸脱附等温线测试结果表明,S元素可抑制含铁纳米粒子的形成,促使形成多孔碳结构,提高比表面积。X射线光电子能谱(XPS)结果表明,适量S前驱体可实现较高的S掺杂含量,得到最优的活性,过量的S反而会导致Fe和S的掺杂量同时降低,影响活性。DFT计算结果表明在Fe-N_4大环中引入S掺杂,可增强O_2分子和中间体OOH与Fe-N_4结构中的Fe的相互作用,促进形成Fe―O键,从而导致O―O键的键能显著降低,为后续反应O―O键的断裂提供可能,促进ORR反应的进行。  相似文献   

5.
从三聚氰胺和均苯四甲酸酐单体出发, 通过熔融盐法合成了三嗪结构聚酰亚胺纳米片, 借助类石墨相氮化碳(g-C3N4)与铁离子的配位作用, 经高温热处理形成了高效掺杂的Fe-N/C催化剂. 研究结果表明, 该催化剂为表面粗糙的纳米片结构, 比表面积高达1794 m2/g. 通过g-C3N4的引入和含量的调控, 催化剂中铁元素的掺杂量最高可达1.13%(摩尔分数), 为未引入g-C3N4的3.3倍, 其原因可归结于g-C3N4配位锚定了铁离子, 其较强的配位作用可以避免高温热处理时铁元素的迁移和聚集. 该催化剂在酸性条件下氧还原反应半波电位为0.79 V, 10000周加速测试后的半波电位衰减了30 mV, 表现出较好的氧还原活性.  相似文献   

6.
开发低成本、高性能的氧还原反应(ORR)催化剂是当前的研究热点.虽然酞菁铁(FePc)在几十年前就被证明能高效地电催化氧还原反应,但由于其电子传导性和稳定性较差,无法取代商用的Pt/C催化剂.氮掺杂碳材料不仅化学性质稳定、电子传导性好,还有一定的氧还原催化活性.本文首先制备了聚苯乙烯@聚多巴胺球前驱体,经过高温碳化后制得了氮掺杂中空碳球,进而负载酞菁铁后制备了负载酞菁铁的氮掺杂中空碳球复合材料(FePc-NHCS).通过调整煅烧温度和酞菁铁的负载量,可进一步调控FePc-NHCS的多孔结构、石墨化程度、氮掺杂的种类与含量及酞菁铁的负载状态.优化后的FePc-NHCS在碱性电解质中显示出优异的ORR催化活性,其半波电位和稳定性均高于商用Pt/C催化剂.研究结果表明,掺杂与复合是增强单项催化组分活性的有效途径.此外,通过调控催化剂的结构和组分也能有效地优化催化剂的氧化还原性能.  相似文献   

7.
通过电沉积的方法获得了一种具有均匀孔隙结构的海绵状二氧化锰催化剂,结合扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段表征了所制备材料的表面形貌、结构及元素构成和赋存价态,采用线性伏安扫描(LSV)法对电沉积材料的电化学性能进行分析,考察其催化氧还原反应的活性,最后以合成的材料为阴极催化剂,构建微生物燃料电池系统,考察其在微生物燃料电池中的应用效果。结果表明,以电沉积二氧化锰为阴极催化剂的微生物燃料电池最大功率密度为975.6 mW/m~2,是以商业二氧化锰为阴极催化剂的电池的1.7倍;这表明作为一种经济、高效、环境友好的阴极氧还原催化剂,电沉积法制备的二氧化锰为实现阴极催化剂的低成本制备以及微生物燃料电池放大化推进提供了新的研究途径。  相似文献   

8.
Fabricating nitrogen-doped carbon layers over the conductive substrate is a cost-effective and efficient approach to develop practical oxygen reduction reaction (ORR) catalyst. In the current work, relying on the commercially available carbon nanotube (CNT), nitrogen-doped carbon layers over CNT is constructed by annealing the in situ formed complex over the CNT surface derived from iron ion inducing diaminonaphthalene (DAN) polymerization and DAN self-polymerization. Physical and electrochemical characterizations are carefully conducted to comparatively analyze the structure and activity relationship. The significance of iron in constructing nitrogen-doped carbon layers and tuning active sites of N types over multiwall carbon nanotube for ORR is demonstrated by X-ray photoelectron spectroscopy and Raman scattering spectrum. The excellent performance of nitrogen-doped carbon layers over CNT (catalyzed by iron) towards ORR is displayed by rotating ring-disk electrode. Specifically, the onset potential, half-wave potential, and limiting current density are 0.961 V, 0.831 V, and 5.20 mA cm?2 respectively, very close to the state-of-the-art commercial Pt/C catalyst. Both high surface area and efficient N active sites should be considered in the nitrogen-doped carbon materials design and fabrication for ORR. Considering the large-scale availability, it has significant value in fuel cells commercial applications.  相似文献   

9.
Mesoporous nitrogen-doped carbon materials with high surface areas up to 1500 m(2) g(-1) were conveniently made by the carbonization of nucleobases dissolved in an all-organic ionic liquid (1-ethyl-3-methylimidazolium dicyanamide). Using hard templating with silica nanoparticles, this process yields high-surface-area nitrogen-doped carbon materials with nitrogen contents as high as 12 wt %, narrow mesopore size distribution of ca. 12 nm diameter, and local graphitic carbon structure. It is demonstrated that the resulting nitrogen-doped carbons show very high catalytic activity, even in the metal-free case in the oxygen reduction reaction (ORR) for fuel cells. Specifically, the as-prepared materials exhibit a low onset voltage for ORR in alkaline medium and a high methanol tolerance, compared with those of commercial 20 wt % Pt/C catalyst. We regard this as a first step toward an all-sustainable fuel cell, avoiding noble metals.  相似文献   

10.
以高含氮量的2-氨基咪唑为氮源,三氯化铁为铁源,高比表面积的KJ600碳黑为载体,通过水热法制得氨基咪唑聚合物前驱体,再经二次高温热处理,制得石墨烯/碳黑复合材料. 透射电镜表征显示该材料为石墨烯纳米片与碳黑颗粒的复合结构. BET表征表明这是一种多孔结构,具有很高的比表面积(882 m2•g-1),这有利于暴露更多活性位点,并促进传质. XRD证实催化剂中存在石墨烯,且石墨烯结构是在第一次热处理过程中形成的. 电化学测试表明,该催化剂在酸性和碱性介质中都具有很高的氧还原电催化活性和低H2O2产率,并且在碱性介质中对甲醇小分子的抗毒化性能明显优于商业Pt/C催化剂,展示出在实际燃料电池系统中的应用潜力.  相似文献   

11.
Environmentally friendly and renewable energy technologies, such as fuel cells and metal-air batteries, hold great promise for solving current energy and environmental challenges. The oxygen reduction reaction (ORR) plays a pivotal role in this top-drawer question. However, the sluggish kinetics of the ORR and prohibitive costs limit the global scalability of such devices. Traditionally, platinum-based electrocatalysts exhibit the best performance for ORRs in both acid and alkaline electrolytes. However, to significantly reduce the cost and realize sustainable development, utilization of Pt must be replaced or significantly reduced in the ORR cathode for fuel cell applications. Therefore, developing earth-abundant and high-performance non-precious metal catalysts (NPMCs) for ORR is of critical importance for the commercialization of fuel cells. In comparison to traditional catalysts, metal-organic frameworks (MOFs) are ideal precursors that integrate metal, nitrogen, and carbon functionalities together into one ordered 3D crystal structure. MOFs, assembled by secondary building of units comprised of metals and organic linkers with strong bonding, have received significant research attention because they possess permanent porosity, a three-dimensional (3D) structure, and can be prepared using a diversity of metals and organic linkers. High surface area, and microporous carbon materials can be easily obtained by carbonization of MOFs at high temperatures. In particular, MOF-derived carbon nanocomposites, which were prepared from transition metals, and have the form M-N-C (M = Fe or Co), have demonstrated remarkably improved catalytic activity and stability. Herein, we report an NPMC material consisting of Fe3C nanoparticles encapsulated in mesoporous N-doped carbon (Fe-N-C), synthesized by a simple strategy involving physical mixing of MIL-100(Fe) with glucose and urea, and subsequent pyrolysis under inert atmosphere. The strong interaction between metal atoms and nitrogen atoms is beneficial in generating more active sites, and sites with a higher intrinsic catalytic activity, via carbonization. The as-obtained catalysts exhibit remarkable ORR activity in alkaline media, with the best catalyst (Fe-N-C-900, which is synthesized at 900 ℃) featuring a more positive onset potential (0.96 V vs the reversible hydrogen electrode (RHE)), a more positive half-wave potential (0.83 V vs RHE), a much higher diffusion limiting current density (6.28 mA·cm-2) and a larger electron-transfer number (n), even at low overpotentials, compared with other contrast materials. Fe-N-C-900's excellent catalytic activity and stability in ORR are due to its large BET surface area, its large total pore volume, its nitrogen dopants, its active Fe3C nanoparticles and the cooperative effects among its reactive functionalities.  相似文献   

12.
高氧还原活性担载铂催化剂的研发是加快质子交换膜燃料电池商业化进程的主要手段之一。以石墨烯为碳源,1,10-菲啰啉为氮源,FeCl3为铁源,用浸渍法制备铁氮掺杂石墨烯(Fe/N-G)载体,并通过乙二醇还原法获得PtFe/N-G催化剂,探究铁氮原子的引入对石墨烯担载铂催化剂氧还原反应催化活性的影响。采用X射线衍射、比表面积和孔径分布测试、X射线光电子能谱等表征手段对载体及催化剂结构进行表征,使用电化学方法对载体和催化剂的氧还原反应活性进行测试。结果表明,PtFe/N-G催化剂的氧还原反应起始电位及半波电位分别为0.96 V、0.83 V,优于相同Pt担载量的商业20%Pt/C催化剂。铁氮掺杂后,石墨烯载体具有较大的孔径更有利于氧还原反应过程中生成物与反应物的传递,PtFe/N-G催化剂中存在吡啶氮和Fe-N型氮与铂纳米颗粒的协同催化,以及铂纳米颗粒与铁氮掺杂石墨烯载体间的相互作用,是PtFe/N-G催化剂具有优异的氧还原催化活性的可能原因。  相似文献   

13.
众所周知,石墨烯片(GS)和碳纳米管是能源转化和储存应用中有效的催化剂. 然而,过渡金属基氮(N)掺杂的体系中经常形成GS和碳纳米管的复合物,使得该体系内的构效关系研究变得十分困难. 为了可控制备出含有理想物种的催化剂,作者尝试通过利用氮对碳纳米管生长的效应调节生成产物的形貌. 本文中,作者采用一步法制备了一系列Fe-N共掺杂的GS、GS/竹节碳纳米管(BCNTs)复合物及BCNTs催化剂. 为了评估碳形貌对催化剂性能的影响,作者采用氧气还原反应(ORR)及二氧化碳还原反应(CO2RR)作为模型反应. 电化学测试结果表明,所有的样品当中仅含BCNTs的催化剂表现出最好的ORR活性(起始电位Eonset = 1.02 VRHE)及CO2RR活性(CO生成法拉第效率FECO = 91.1%,-0.6 VRHE). 进一步的研究表明,优异的活性与独特的BCNTs中存在的缺陷、较大的比表面积、高含量的吡啶N及FeNx相关. 该工作加深了作者对形貌相关的ORR及CO2RR过程的认识和理解.  相似文献   

14.
CoSe2 nanoparticles were synthesized via a facile hydrothermal method, and characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The synthesized CoSe2 was composed of crystalline orthorhombic phase and displayed a morphology of short and thin nanobelts. The results of the catalyst experiment demonstrate that the CoSe2 nanocrystals show high catalytic activity and methanol tolerance in oxygen reduction reaction(ORR) with an open circuit potential(OCP) of 0.80 V(vs. NHE) in 0.5 mol/L H2SO2 at 25 ℃. The transfer process of about 3.7 electrons per oxygen molecule was determined during the reduction process and the transfer coefficient and Tafel slope were 0.50 and 118 mV, respectively, in the potential region of 0.64-0.75 V(vs. NHE). The high catalytic activity might be related to the high crystallization of the CoSe2 powder and the modification of selenium on the cobalt element.  相似文献   

15.
Oxygen reduction reaction(ORR) is a significant reaction for energy conversion systems(such as fuel cells, metal-air batteries, etc.). It is an urgent need to develop cheap, durable and highly-active catalysts for efficient ORR. Hence, we report a metal-free nitrogen and sulfur co-doped porphyrin-based covalent organic framework(COF) as a high-efficiency ORR catalyst[the onset potential(Eo) is 0.79 V and the half-wave potential(E1/2) is 0.70 V]. The double doping of N and S atoms causes uneven charge distribution around carbon atoms, which can act as catalytic active centers, improving ORR activity. Compared with single-atom doping, double atoms doping exhibits a higher activity due to the synergistic effect between different elements. These results demonstrate that reasonable design of stable metal-free COFs with a high electrochemical activity can promote their wide applications.  相似文献   

16.
氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重. Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C, N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.
  本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中, EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m2/g,孔径约1.1 nm.在第二步热解过程中, N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m2/g.
  电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中, Fe-N-C电催化剂对ORR具有良好的催化活性, ORR起始电位(Eo)为1.08 V (vs. RHE),半波电位(E1/2)0.88 V,电子转移数n接近4, H2O2产率<3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明, Fe-N-C的E1/2未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO4)中, Fe-N-C的Eo为0.85 V, E1/2为0.75 V,其E1/2比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明, Fe-N-C较好的ORR活性主要来自于高分散的Fe-N4结构,此外, N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.
  与Pt/C相比, Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm2(Pt/C).结合半电池结果表明, Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.  相似文献   

17.
Conjugated microporous polymers (CMPs) as emerging porous materials with diverse structures and tunable building‐units have attracted much attention in the electrochemical field. Herein, we designed phthalocyanine‐porphyrin‐based conjugated microporous polymers as precursors for fabrication of Co, Fe, N tri‐doped graphene composites towards oxygen reduction and evolution reaction (ORR/OER). As expected, the elements cobalt and iron are well dispersed in graphene carbon and interact with the nitrogen sites, thereby providing extra electrocatalytic active sites and enhancing its overall conductivity. Benefiting from its unique design and structure, the obtained catalyst affords a superior bifunctional catalytic activity with a positive onset potential of 0.957 V for ORR, and a low overpotential of 0.36 V for OER. More attractively, the CoFeNG is employed as an air cathode catalyst in Zn‐air batteries, showing a maximum current density of 215 mA cm?2 and good cycle stability for 20000 s. The rational design of phthalocyanine‐porphyrin‐based derivatives provides a feasible route for the construction of high‐performance ORR/OER catalysts.  相似文献   

18.
Both nitrogen-doping feature and pore structure are critical factors for developing nitrogen-doped carbons based catalysts with a high performance toward oxygen reduction reaction(ORR).Herein,a simple one-step CVD of acetylene and acetonitrile vapor method using silanized SBA-15 as a template has been developed to synthesize an ordered porous carbon(OPC) with dual nitrogen-doped interfaces.The optimized sample as prepared with the CVD of 4 h at 750℃ contains two types of ordered mesopores that one type is the ordered cylindrical pores inheriting from the pores of SBA-15 and has a pore width of4.0~5.0 nm,the other type is the ordered quasi-hexagonal pores with a width of 3.0~4.0 nm produced by etching the pore walls of SBA-15.These two types of pores whose pore walls are built by the nitrogen doped carbon layers resulted by the CVD and thus it actually makes the dual nitrogen-doped interfaced OPC(DN-OPC).Meanwhile,DN-OPC contains a few of micropores and a large SSA of 1430 m~2/g.This dualordered pores and dual nitrogen-doped interfaces cannot only facilitate mass transport but also utilize the active sites of DN-OPC for ORR.Therefore,as metal-free ORR catalyst,DN-OPC exhibits a good activity close to commercial Pt/C catalyst,and an excellent durability and methanol tolerance.  相似文献   

19.
利用化学原位聚合法制备聚吡咯包覆碳纳米管, 然后以硫酸亚铁铵盐为铁前驱体, 采用液相沉淀法制备聚吡咯-碳纳米管-铁化合物复合材料(Fe-PPy-CNTs), 通过对复合材料Fe-PPy-CNTs 热处理, 成功制备出铁基氮掺杂碳纳米管催化剂FeNCNTs. X射线衍射分析表明, 热处理使Fe-PPy-CNTs 复合物中Fe3O4向Fe3N和Fe转化, 700 ℃热处理制备的FeNCNT700中铁主要是Fe3O4相, 但也有Fe相. 800和900 ℃热处理制备的催化剂FeNCNT800和FeNCNT900则明显有Fe3N和Fe形成. 随着热处理温度升高, FeNCNTs 催化剂氮含量降低, 其含氮官能团也由吡咯型氮向吡啶型和石墨型氮转化. 电化学分析表明, 含有Fe3N 的FeNCNT800 和FeNCNT900催化剂具有明显的氧还原催化活性, 其中, FeNCNT800因其具有高的比表面积、高的氮含量和高比例的有利于增强氧吸附能力和弱化O―O键的石墨氮官能团, 而表现出优于FeNCNT900氧还原催化活性及稳定性.  相似文献   

20.
以尿素做氮源、醋酸钴做金属源,用湿法合并高温热处理法合成了钴/氮共掺杂碳的非贵金属氧还原催化剂Co-N/C-T. 采用循环伏安(CV)法和线性扫描法(LSV)探究了氮源和金属源用量以及热处理温度对氧还原反应电催化活性的影响,活性最好的催化剂Co0.13-N0.3/C-800的峰电位达到0.829 V(vs.RHE),接近商用Pt/C的活性,但比商用Pt/C有更好的耐甲醇性和稳定性. 同时,采用SEM,TEM,BET,XRD和XPS方法表征了催化剂结构和组分特征,并提出催化剂可能的电催化活性氧还原反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号