首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
共价有机框架(COFs)材料是有机构筑基元通过共价键连接而形成的晶态有机多孔材料. COFs具有孔道结构规整、及比表面积高等特点,被广泛地应用于气体储存与分离、催化、传感、储能及光电转化等领域.将具有可调吸光能力的有机构筑基元引入到COFs中,可使其展现出强大的光催化潜力.近年来, COFs在光催化领域中发展迅猛.本文总结了COFs在光催化产氢、光催化二氧化碳还原、光催化有机反应以及光催化污染物降解等方面的研究进展,并展望了其在光催化领域的应用前景.  相似文献   

2.
Covalent organic frameworks (COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two- or three-dimensional crystalline organic structures. Generally, it is preferable to use symmetric and rigid building blocks to construct highly crystalline COFs with desired topology. On the other hand, the incorporation of chiral functional moieties in the building blocks would open up new applications such as asymmetric catalysis and chiral separation. This mini review highlights the principle strategies in the design and synthesis of chiral COFs. The interesting and potential applications of these chiral COFs for asymmetric catalysis and chiral separation are also summarized. This mini review aims to provide an up-to-date advancement of chiral COFs for asymmetric catalysis and chiral separation.  相似文献   

3.
葛子义 《高分子科学》2017,35(2):171-183
Development of organic semiconductors is one of the most intriguing and productive topics in material science and engineering. Many efforts have been made on the synthesis of aromatic building blocks such as benzene, thiophene and pyrrole due to the facile preparation accompanied by the intrinsic environmental stability and relatively efficient properties of the resulting polymers. In the past, furan has been less explored in this field because of its high oxidation potential. Recently, furan has attracted obsession due to its weaker aromaticity, the greater solubilities of furan-containing π-conjugated polymers relative to other benzenoid systems and the accessibility of furan-based starting materials from renewable resources. This review elaborates the advancements of organic photovoltaic polymers containing furan building blocks. The uniqueness and advantages of furan-containing building blocks in semiconducting materials are also discussed.  相似文献   

4.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

5.
The field of covalent organic frameworks (COFs) has been developed significantly in the past decade on account of their important characteristics and vast application potential. On the other hand, the discovery of novel synthetic methodology is still a challenging task to further promote the preparation of COFs. Herein, an interesting protocol for the conversion of amorphous nonporous covalent organic polymers (COPs) to COFs was established, affording four COFs with high crystallinity and porosity. Specifically, imine‐linked amorphous COP‐1 was successfully converted to COF‐1–4 by replacing one type of linker with other organic building blocks. The realization of this conversion provides a facile method for constructing COFs from COPs.  相似文献   

6.
Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving–Williams series in their metal contents, surface areas, and pore volume and featured excellent CO2 uptake capacities up to 7.6 mmol g−1 at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO2 reduction, which showed Faradaic efficiencies towards CO up to 74 % at −0.64 V vs. RHE.  相似文献   

7.
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π–π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm−1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.  相似文献   

8.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

9.
A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.e., Aza-COF series with full conversion of the dione moiety, long-range order, and high surface area. In addition, the novel three-component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza-COFs with nanostructured surfaces on various substrates. The Aza-COFs exhibit light absorption maxima in the blue spectral region, and each Aza-COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza-Ph- and Aza-Naph-COFs suggest ultrafast relaxation dynamics of excited-states within these COFs.  相似文献   

10.
Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long-range π-conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF-based energy transfer Ni catalysis. A pyrene-based COF with sp2 carbon-conjugation was synthesized and used to coordinate NiII centers through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity.  相似文献   

11.
Covalent organic frameworks (COFs) are an emerging kind of crystalline porous polymers that present the precise integration of organic building blocks into extensible structures with regular pores and periodic skeletons. The diversity of organic units and covalent linkages makes COFs a rising materials platform for the design of structure and functionality. Herein, recent research progress in developing COFs for photoluminescent materials is summarised. Structural and functional design strategies are highlighted and fundamental problems that need to be solved are identified, in conjunction with potential applications from perspectives of photoluminescent materials.  相似文献   

12.
Covalent organic frameworks (COFs) are a class of crystalline porous polymers that allow the atomically precise integration of organic units to create predesigned skeletons and nanopores. They have recently emerged as a new molecular platform for designing promising organic materials for gas storage, catalysis, and optoelectronic applications. The reversibility of dynamic covalent reactions, diversity of building blocks, and geometry retention are three key factors involved in the reticular design and synthesis of COFs. This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration.  相似文献   

13.
Covalent organic frameworks (COFs) enable precise integration of various organic building blocks into porous skeletons through topology predesign. Here, we report the first example of COFs by integrating electron withdrawing bromine group onto the skeletons for triboelectric nanogenerators (TENG). The resulting framework exhibits high surface area and good crystallinity. Thus, the bromine functionalized COF has more regular aligned π columns and arrays over the skeleton than bare COFs, which in turn significantly enhances charge transport ability. As a result, bromine functionalized COFs showed higher electrical output performance at 5 Hz with a peak value of short circuit current density of 43.6 μA and output voltage of 416 V, which is 2 and 1.3 times higher than those of bare COFs (21.6 μA and 318 V), respectively. These results demonstrated that this strategy for engineering electron withdrawing groups on the skeleton could open a new aspect of COFs for developing TENG devices.  相似文献   

14.
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm−2. DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.  相似文献   

15.
Covalent organic frameworks(COFs), orderly assembled from the building blocks via covalent bonds, are a novel type of porous materials with rich functional sites and permanent porosity. At present, most of COFs are achiral networks, nevertheless, chiral COFs(CCOFs) have become a research hotspot in recent years, due to their unique chiral sites and microenvironment. As one of the most important applications of CCOFs, chiral separation has attracted huge attention for the convenient, rapid and efficient feature. In this review, recent progresses of covalent organic frameworks for chiral separation are covered. And we also present the challenges and outlooks of CCOFs in the future for this field.  相似文献   

16.
Covalent organic frameworks(COFs) featuring designable nanoporous structures exhibit many fascinating properties and have attracted great attention in recent years for their intriguing application potential in sensing, catalysis, gas storage and separation, optoelectronics, etc. Rational design of twodimensional(2D) COFs through judiciously selecting chemical building blocks is critical to acquiring predetermined skeleton and pore structures. In this perspective, we review the reticular synthesis of 2D COFs with different topologies, highlighting the important role of various characterization techniques in crystal structure determination. 2D COFs with simple tessellations have been widely investigated, while the synthesis of complex tessellated COFs is still a great challenge. Some recent examples of 2D COFs with novel topological structures are also surveyed.  相似文献   

17.
Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple‐linking‐site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3‐symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as‐prepared heteropore COFs have hollow‐spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.  相似文献   

18.
Vinylene-linked covalent organic frameworks (COFs) are emerging as promising crystalline materials, but their narrow pore engineering is severely impeded by the weak reversibility of the carbon-carbon double bond formation reaction, which has led to less exploration of their ultramicroporous structures and properties. Herein, we developed a single aromatic ring-based tetratopic monomer, tetramethylpyrazine, which undergoes a smooth Knoevenegal condensation at its four arylmethly carbon atoms with linear aromatic dialdehyde monomers upon the self-catalyzed activation of pyridine nitrogen-containing monomers in the presence of an organic anhydride. This has resulted in the formation of two vinylene-linked COFs, which both crystallized in orthorhombic lattices, and layered in AA stacking fashions along the vertical directions. They exhibit high surface areas and well-tailored ultramicropore sizes up to 0.5 nm. The unique cross-linking mode at two pairs of para-positions of each pyrazine unit through carbon-carbon double bonds afford them with π-extended conjugation over the in-plane backbones and substantial semiconducting characters. The resultant COFs can be well-dispersed in water to form stable sub-microparticles with negative charges (zeta potentials: ca. −30 mV), and exhibiting tunable aggregation behaviors through protonation/deprotonation. As a consequence, they exhibit pore-size-dependent colorimetric responses to various anions with different pKa values in high selectivity.  相似文献   

19.
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.  相似文献   

20.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials which are completely constructed from organic building blocks through robust covalent bonds. High surface areas, compositional and structural tunability, low density, and superior stability have rendered COF candidates in a variety of applications, such as adsorption and separation, catalysis, electronics, chemical sensing, optics, and so forth. To better understand the structures and properties of COFs as well as the design principles, it is of great significance to learn about the linkages formed during synthetic reactions that contribute to the high crystallinity and stability of COFs. In this review, we will first discuss various linkages that have been utilized for COF construction up to date, followed by an outline of their miscellaneous applications, providing a comprehensive and detailed overview in this file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号