首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hidden symmetries of differential equations are point symmetries that arise unexpectedly in the increase (equivalently decrease) of order, in the case of ordinary differential equations, and variables, in the case of partial differential equations. The origins of Type II hidden symmetries (obtained via reduction) for ordinary differential equations are understood to be either contact or nonlocal symmetries of the original equation while the origin for Type I hidden symmetries (obtained via increase of order) is understood to be nonlocal symmetries of the original equation. Thus far, it has been shown that the origin of hidden symmetries for partial differential equations is point symmetries of another partial differential equation of the same order as the original equation. Here we show that hidden symmetries can arise from contact and nonlocal/potential symmetries of the original equation, similar to the situation for ordinary differential equations.  相似文献   

2.
3.
The μ‐Camassa‐Holm equation with linear dispersion is a completely integrable model. In this paper, it is shown that this equation has quadratic pseudo‐potentials that allow us to construct pseudo‐potential–type nonlocal symmetries. As an application, we obtain its recursion operator by using this kind of nonlocal symmetry, and we construct a Darboux transformation for the μ‐Camassa‐Holm equation.  相似文献   

4.
A systematic method to derive the nonlocal symmetries for partial differential and differential-difference equations with two independent variables is presented and shown that the Korteweg-de Vries (KdV) and Burger's equations, Volterra and relativistic Toda (RT) lattice equations admit a sequence of nonlocal symmetries. An algorithm, exploiting the obtained nonlocal symmetries, is proposed to derive recursion operators involving nonlocal variables and illustrated it for the KdV and Burger's equations, Volterra and RT lattice equations and shown that the former three equations admit factorisable recursion operators while the RT lattice equation possesses (2×2) matrix factorisable recursion operator. The existence of nonlocal symmetries and the corresponding recursion operator of partial differential and differential-difference equations does not always determine their mathematical structures, for example, bi-Hamiltonian representation.  相似文献   

5.
In this work we present results on the construction of λ-symmetries for ordinary differential equation using ideas derived from the notion of nonlocal symmetries and Jacobi last multiplier. We then apply the results obtained to the case of ordinary difference equations.  相似文献   

6.
We show that the four‐dimensional Martínez Alonso–Shabat equation is nonlinearly self‐adjoint with differential substitution and the required differential substitution is just the admitted adjoint symmetry and vice versa. By means of computer algebra system, we obtain a number of local and nonlocal symmetries admitted by the equations under study. Then such symmetries are used to construct conservation laws of the equation under study and its reductions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The complete symmetry group of an 1+1 evolution equation of maximal symmetry has been demonstrated to be represented by the six-dimensional Lie algebra of point symmetries sl(2,R)sW, where W is the three-dimensional Heisenberg-Weyl algebra. We construct a complete symmetry group of a 1+2 evolution equation ut=(Fy(u)ux) for some functions F using the point symmetries admitted by the equation. The 1+2 equation is not completely specifiable by point symmetries alone for some specific functions F. We make use of Ansätze already reported by Myeni and Leach [S.M. Myeni, P.G.L. Leach, Nonlocal symmetries and complete symmetry groups of evolution equations, J. Nonlinear Math. Phys. 13 (2006) 377-392] which provide a route to the determination of the required generic nonlocal symmetries necessary to supplement the point symmetries for the complete specification of these 1+2 evolution equations. Further we find that taking some suitable linear combination of Lie point symmetries helps to optimise the procedure of specifying the equation. A general result concerning the number of symmetries required to form a complete symmetry group of evolution is presented in the Conclusion.  相似文献   

8.
In this paper, the nonlocal symmetries and exact interaction solutions of the variable coefficient Korteweg–de Vries (KdV) equation are studied. With the help of pseudo-potential, we construct the high order nonlocal symmetries of the time-dependent coefficient KdV equation for the first time. In order to construct the new exact interaction solutions, two auxiliary variables are introduced, which can transform nonlocal symmetries into Lie point symmetries. Furthermore, using the Lie point symmetries of the closed system, some exact interaction solutions are obtained. For some interesting solutions, such as the soliton–cnoidal wave solutions are discussed in detail, and the corresponding 2D and 3D figures are given to illustrate their dynamic behavior.  相似文献   

9.
In this paper, we make a full analysis of a family of Boussinesq equations which include nonlinear dispersion by using the classical Lie method of infinitesimals. We consider travelling wave reductions and we present some explicit solutions: solitons and compactons.For this family, we derive nonclassical and potential symmetries. We prove that the nonclassical method applied to these equations leads to new symmetries, which cannot be obtained by Lie classical method. We write the equations in a conserved form and we obtain a new class of nonlocal symmetries. We also obtain some Type-II hidden symmetries of a Boussinesq equation.  相似文献   

10.
Classifications of symmetries and conservation laws are presented for a variety of physically and analytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations of modified Korteweg-de Vries equations, as well as Hamiltonian variants. The mains results classify all admitted local point symmetries and all admitted local conserved densities depending on up to first order spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which these wave equations admit, in particular, dilational energies or conformal energies and inversion symmetries are determined. In addition, potential systems arising from the classified conservation laws are used to determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustrative applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up solutions, and one-dimensional optimal symmetry groups for invariant solutions.  相似文献   

11.
A demonstration of how the point symmetries of the Chazy equation become nonlocal symmetries for the reduced equation is discussed. Moreover we construct an equivalent third-order differential equation which is related to the Chazy equation under a generalized transformation, and find the point symmetries of the Chazy equation are generalized symmetries for the new equation. With the use of singularity analysis and a simple coordinate transformation we construct a solution for the Chazy equation which is given by a right Painlevé series. The singularity analysis is applied to the new third-order equation and we find that it admits two solutions, one given by a left Painlevé series and one given by a right Painlevé series where the leading-order behaviors and the resonances are explicitly those of the Chazy equation.  相似文献   

12.
In this paper, we consider modified Korteweg-de Vries (mKdV) equation. By using the nonlocal conservation theorem method and the partial Lagrangian approach, conservation laws for the mKdV equation are presented. It is observed that only nonlocal conservation theorem method lead to the nontrivial and infinite conservation laws. In addition, invariant solution is obtained by utilizing the relationship between conservation laws and Lie-point symmetries of the equation.  相似文献   

13.
In this paper, using the standard truncated Painlevé analysis, the Schwartzian equation of (2+1)-dimensional generalized variable coefficient shallow water wave (SWW) equation is obtained. With the help of Lax pairs, nonlocal symmetries of the SWW equation are constructed which be localized by a complicated calculation process. Furthermore, using the Lie point symmetries of the closed system and Schwartzian equation, some exact interaction solutions are obtained, such as soliton–cnoidal wave solutions. Corresponding 2D and 3D figures are placed to illustrate dynamic behavior of the generalized variable coefficient SWW equation.  相似文献   

14.
A class of nonlocal symmetries of the Camassa-Holm type equations with bi-Hamiltonian structures, including the Camassa-Holm equation, the modified Camassa-Holm equation, Novikov equation and Degasperis-Procesi equation, is studied. The nonlocal symmetries are derived by looking for the kernels of the recursion operators and their inverse operators of these equations. To find the kernels of the recursion operators, the authors adapt the known factorization results for the recursion operators of ...  相似文献   

15.
16.
In this paper the general magma equation modelling a melt flow in the Earth’s mantle is discussed. Applying the new theorem on nonlocal conservation laws [Ibragimov NH. A new conservation theorem. J Math Anal Appl 2007;333(1):311–28] and using the symmetries of the model equation nonlocal conservation laws are computed. In accordance with Ibragimov [Ibragimov NH. Quasi-self-adjoint differential equations. Preprint in Archives of ALGA, vol. 4, BTH, Karlskrona, Sweden: Alga Publications; 2007. p. 55–60, ISSN: 1652-4934] it is shown that the general magma equation is quasi-self-adjoint for arbitrary m and n and self-adjoint for n = ?m. These important properties are used for deriving local conservation laws.  相似文献   

17.
We explore variational Poisson-Nijenhuis structures on nonlinear partial differential equations and establish relations between the Schouten and Nijenhuis brackets on the initial equation and the Lie bracket of symmetries on its natural extensions (coverings). This approach allows constructing a framework for the theory of nonlocal structures. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 154, No. 2, pp. 268–282, February, 2008.  相似文献   

18.
New formulae of nonlocal nonlinear superposition and generation of solutions are proposed for nonlinear diffusion-convection equations which are linearizable or are invariant with respect to a generalized hodograph transformation or connected by this transformation. We study in what particular ways additional Lie symmetries of diffusion-convection equations induce nonlocal symmetries of equations obtained from the initial ones by nonlocal transformations. The formulae derived are used for the construction of exact solutions.  相似文献   

19.
We consider the three-dimensional rdDym equation uty = uxuxy ?uyuxx. Using the known Lax representation with a nonremovable parameter and two hierarchies of nonlocal conservation laws associated with it, we describe the algebras of nonlocal symmetries in the corresponding coverings.  相似文献   

20.
We evaluate nonlocal symmetries for third-order exactly integrable two-field divergent evolutionary equations. These symmetries, regarded as evolutionary equations, commute with higher analogues of the underlying original equations and seem to be exactly integrable. By differentiating nonlocal systems and changing the variables, we obtain local hyperbolic systems and third-order nonevolutionary systems. We find a zero-curvature representation for some of the new systems. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 156, No. 3, pp. 351–363, September, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号